Education Profile

  • ​Ph.D., Plant Sciences, University of Cambridge, U.K., 1988
  • B.Sc., Plant Sciences, University of Adelaide, Australia, 1984

Research Interests

The immediate aim of Professor Tester's research program is to elucidate the molecular genetic mechanisms that enable certain plants to thrive in sub-optimal conditions, such as those of high salinity or high temperature, and then deliver the outputs in economically viable systems.  In our research group, forward and reverse genetic approaches are used to understand and manipulate traits that contribute to salinity tolerance and improve this in crops such as barley, rice, tomatoes and quinoa.

One intellectual aim is to understand the co-ordination of whole plant function through processes occurring at the level of single cells, particularly through processes of long-distance communication within plants. This aim is being addressed by integrating genetic and genomic approaches with a broad-based understanding of plant physiology in both controlled conditions and the field.An immediate applied aim of the program is to modify crop plants in order to increase productivity in conditions of challenging abiotic stress, with consequent improvement of yield in Saudi Arabia, the region and globally. A larger aspiration is to unlock seawater, by developing a new economically viable agricultural system where salt-tolerant crops are irrigated with partially desalinized seawater or brackish groundwater. A company, Red

Sea Farms, has been established to facilitate this delivery.

Check out some of these websites: ,

Selected Publications


  • Ward, B., Brien, C., Oakey, H., Pearson, A., Negrão, S., Schilling, R., Taylor, J., Jarvis, D., Timmins, A., Roy, S.J., Tester, M., Berger, B. & van den Hengel, A. (2019) High-throughput 3D imaging to dissect the genetic control of leaf elongation in barley. Plant Journal 98: 555-570
  • Morton, M.J.L., Awlia, M., Al-Tamimi, N., Saade, S., Pailles, Y., Negrão, S. & Tester, M. (2019) Salt stress under the scalpel – dissecting the genetics of salt tolerance. Plant Journal 97: 148-163
  • Maughan, PJ, Chaney, L., Lightfoot, D.J., Cox, B.J., Tester, M., Jellen, E.N., Jarvis, D.E. (2019) Mitochondrial and chloroplast genomes provide insights into the evolutionary origins of quinoa (Chenopodium quinoa Willd.).Scientific Reports 9: 185, doi:10.1038/s41598-018-36693-6
  • Zaidi, S.S., Mahfouz, M.M., Kohli, A., Vanderschuren, H., Mansoor, S. & Tester, M (2019) New plant breeding technologies for food security. Science 363: 1390-1391
  • Johansen, K., Morton, M.J.L., Malbeteau, Y., Solorio, B., Al-Mashharawi, S., Ziliani, M., Angellopez, Y., Fiene, G., Negrao, S., Mousa, M., Tester, M., McCabe, M.F. (2019) Unmanned aerial vehicle-based phenotyping using morphometric and spectral analysis can quantify responses of wild tomato plants to salinity stress. Frontiers in Plant Science 10: doi: 10.3389/fpls.2019.00370
  • Julkowska, M.M., Saade, S., Agarwal, G.,Gao, G., Pailles, Y., Morton, M., Awlia, M., Tester, M. (2019) MVApp – Multivariate analysis application for streamlined data analysis and curation. Plant Physiology, in press
  • Hickey, L.T., Hafeez, A., Robinson, H., Jackson, S.A., Leal-Bertioli, S.C.M., Tester, M., Gao, C., Godwin, I.D., Hayes, B.J., Wulff, B.B.H. (2019) Speeding up breeding to meet the 10 billion challenge? Nature Biotechnology 37:744–754 (invited review)
  • Saade, S., Maurer, A., Shahid, M., Oakey, H., Schmöckel, S.M., Negrão, S., Pillen, K. & Tester, M. (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports 6: 32586. doi: 10.1038/srep32586
  • Al-Tamimi, N., Brien, C., Oakey, H., Berger, B., Saade, S., Ho, Y.S., Schmöckel, S.M., Tester, M. & Negrão, S. (2016) Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nature Communications 7, 13342.  doi: 10.1038/ncomms13342
  • Schilling R.K., Marschner, P., Shavrukov, Y., Berger, B., Tester, M., Roy, S.J. & Plett, D.C. (2014) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnology Journal 12: 378–386. DOI: 10.1111/pbi.12145