Paper sensors remove the sting of diabetic testing

A KAUST-led group has developed a technique that enables biologically active enzymes to survive the rigors of inset printing.
© 2018 KAUST

A technique that enables biologically active enzymes to survive the rigors of inkjet printing presents a promising alternative to routine blood screening exams faced by diabetic patients. The KAUST-led team used this approach to make disposable devices that can measure glucose concentrations in human saliva.

Strips of pH-sensitive paper are commonly used to test whether a liquid is acidic or alkaline. Researchers are now working to apply similar principles to create paper sensors that quickly indicate disease biomarkers. Key to this approach is replacing traditional electronic circuitry in the sensors with low-cost plastics that can be manufactured quickly and in large quantities.

Bioscientist Sahika Inal collaborated with electrical engineer Khaled Salama and materials scientist Derya Baran to use inkjet technology to produce sensors sensitive to small sugar concentrations in biofluids.

Utilizing a commercial ink made from conducting polymers, the team printed microscale electrode patterns onto glossy paper sheets. Next, they printed a sensing layer containing an enzyme, glucose oxidase, on top of the tiny electrodes. The biochemical reaction between available glucose and the enzyme creates electrical signals easily correlated to blood sugar levels.

“Paper is porous, which makes it challenging to print conducting and biological inks that are dissolved in water,” says Eloise Bihar, a postdoctoral researcher at KAUST and the first author of the study. “Printing the enzyme is tricky as well—it’s sensitive to variations of temperature, the voltage applied at the cartridge, and the pH of the ink.”

Read the full article