Research Interests

Selma's field of research interests focuses on the design, implementation, electrical characterization, preparation, and instrumental analysis of samples. She has expertise in Condensed Matter Physics, Materials Physics, and Materials Science.​ ​Her project will extend the understanding of the spin-dependent thermal and electrical transport in MTJs, and demonstrate that thermoelectric power can be used as a characterization of the heating/cooling dynamics in MTJs.

Selected Publications

  1. Strelkov, N., A. Vedyaev, D. Gusakova, L.D. Buda-Prejbeanu, S. Amara, M. Chshiev and B. Dieny. Finite element modelling of charge and spin currents in magnetoresistive pillars with current crowding effects. IEEE Magnetics Letters 1 (2010) 3500204. 
  2. Strelkov, N., A. Vedyaev, N. Ryzhanova, D. Gusakova, L.D. Buda-Prejbeanu, M. Chshiev, S. Amara, N. de Mestier, C. Baraduc and B. Dieny, Spin current vortices in current-perpendicular to-plane nanoconstricted spin valves. Physical Review B 84 (2011) 024416. 
  3. S. Amara-Dababi, R.C. Sousa, M. Chshiev, H. Béa, J. Alvarez-Hérault, I.L. Prejbeanu, K. Mackay and B. Dieny , Charge trapping-detrapping mechanism of barrier breakdown in MgO magnetic tunnel junctions, Applied Physics Letters 99 (2011) 083501.
  4. S. Amara-Dababi, H.Béa, R.C.Sousa and B.Dieny, Modelling of time-dependent dielectric barrier breakdown mechanisms in MgO-based magnetic tunnel junctions. J. Phys. D: Appl. Phys. 45 295002 (2012). 
  5. S. Amara-Dababi, H.Béa, R.C. Sousa, C.Baraduc and B.Dieny, Correlation between write endurance and electrical 1/f noise in MgO based magnetic tunnel junctions for MRAM cells. Applied Physics Letters 102, 052404 (2013). 
  6. S. Amara-Dababi, H.Béa, R.C. Sousa, C.Baraduc and B.Dieny, Barrier Breakdown mechanisms in MgObased Magnetic Tunnel Junctions under pulsed conditions and correlation with low-frequency Noise. Journal of Nanophotonics JNP 12076SSP (2013).
  7. Amara-Dababi S et al, Breakdown mechanisms in MgO based magnetic tunnel junctions and correlation with low-frequency noise. Microelectron Reliab (2013). http://dx.doi.org/10.1016/j.microrel.2013.07.034
  8. Amara-Dababi S et al, MgO-based Magnetoresistive Biosensor for Magnetically labeled Cells Detection. Intermag, April 23rd to 27th 2018. Marina Bay Sands Convention Center, Singapore. (Poster).
  9. Amara-Dababi S et al, MgO-based Magnetoresistive Biosensor for Magnetically labeled Cells Detection. 13th Annual IEEE International Symposium on Medical Measurements & Applications 2018. June11-13, Rome, Italy. (Poster).
  10. Amara-Dababi S et al, Multibit Memory Cells Based on Spin-Orbit Torque Driven Magnetization Switching of Nanomagnets with Configurational Anisotropy. 2nd EDTM 2018, March 13-16, 2018, Japon. (Poster).
  11. Amara-Dababi S et al, Integreated and Sensitive Magnetic Tunnel Junction Cytometer. International Conference on Magnetism ICM2018, July 15-20, 2018, San Francisco. (Poster).
  12. Amara-Dababi S et al, Spin-Orbit Torque Driven Multi-State Device for Memory Applications. MRAM-related events at IEDM2018, 2018 IEEE International Electron Devices Meeting. December 1-5, 2018, San Francisco. (Poster).
  13. Amara-Dababi S et al, Spin-Orbit Torque Driven Multi-State Device for Memory Applications. 2019 IEEE Electron Devices Technology and Manufacturing Conference (IEEE EDTM 2019). March 13-15, 2019, Singapore. (Poster).
  14. M.Alawein, S.Amara, and H. Fariborzi, Multistate Nanomagnetic Logic Using Equilateral Permalloy Triangles. IEEE Magnetics Letters.2019, 10.1109/LMAG.2019.2899819.
  15. S. Amara et al, High performance MgO-Based Magnetoresistive Sensors With a Thin Co60Fe20B20 Free Layer. (Under revision: Sensors and Actuators A).
  16. M.Alawein, S.Amara, and H. Fariborzi, Spin Hall Effect Driven Nanomagnets With Configurational Anisotropy: Toward Multistate Spintronic Memories Sensor System. (Final revision: Journal of Applied Physics).
  17. S. Amara et al, An Integrated and Highly-Sensitive Magnetic Tunnel Junction Cytometer. (Under revision: Adv. Eng. Mater).

Education Profile

  • Ph.D. Thesis in Micro and Nano Electronics at Joseph Fourrier University in Grenoble within the SPINTEC laboratory (INAC, CEA Grenoble center) obtained with the Highest distinction (mention Très bien). (2010-2013)
  • Master's degree in Nanoelectronics devices Research obtained from the MINELEC (Matériaux Microélectronique Nanosciences de Provence) Institute with the Highest distinction (mention Bien), Marseille, France. (2008-2009)
  • B.S. Physics, Specialty: Nano-sciences and microtechnologies as part of my training of Physics superior teacher certification (Agrégation Physique) obtained from TEMPUS-MEDA Franco-Tunisian Project cooperation between ENS Cachan (Ècole Normale Supèrieure, Paris) and IPEST (Institut Préparatoire aux Études Scientifiques et Techniques), La Marsa, Tunisi. (2005-2007)