One switch to rule them all

Two thermally and electrically responsive switch configurations on a sapphire surface.

© 2018 KAUST

Frequency-tunable communication modules, such as antennas and filters, are expected to help miniaturize wireless devices. Researchers at KAUST have created switches that enable control over these modules in response to stimuli.

Mobile devices to support multiple standards, such as a global positioning system and a global system for mobile communications, require antennas that are capable of covering several frequency bands. “Radio-frequency switches are the key to realizing cost- and space-saving frequency-tunable antennas and filters,” says Ph.D. student Shuai Yang, who worked on the project with his supervisor Atif Shamim.

Commercially available radio-frequency switches have performance limitations and involve convoluted fabrication approaches that require expensive materials and tools.

Now, Shamim’s team has developed a cost-effective inkjet-printing method to generate switches. “Just as for newsprint, the cost of printed electronics is extremely low,” says post-doctoral fellow, Mohammad Vaseem, who is also an author on the paper. The switches consisted of thermally and electrically responsive single layers of vanadium dioxide.

Read the full article