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Deep-ultraviolet lasing was achieved at 243.5 nm from an AlxGa1�xN-based multi-quantum-well

structure using a pulsed excimer laser for optical pumping. The threshold pump power density at

room-temperature was 427 kW/cm2 with transverse electric (TE)-polarization-dominant emission.

The structure was epitaxially grown by metalorganic chemical vapor deposition on an Al-polar

free-standing AlN (0001) substrate. Stimulated emission is achieved by design of the active region,

optimizing the growth, and the reduction in defect density afforded by homoepitaxial growth of

AlN buffer layers on AlN substrates, demonstrating the feasibility of deep-ultraviolet diode lasers

on free-standing AlN. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795719]

The germicidal characteristics of deep-ultraviolet (DUV)

radiation at k< 280 nm have inspired the development of opto-

electronic devices such as light emitting diodes (LEDs)

and laser diodes (LDs) for applications such as water purifica-

tion, bio-agent detection, and pathogen sterilization.1,2

Conventional sources of UV radiation include high pressure

mercury lamps and excimer lasers, which suffer the disadvan-

tages of containing toxic materials and low portability. A com-

pact and efficient semiconductor device is, therefore, a

desirable alternative. The AlGaInN material system can access

the entire UV spectral range from near-(320–400 nm)3,4

to middle-(280–320 nm)5,6 and deep-UV (200–280 nm).7,8

However, the current performance of AlGaInN light-emitting

devices is limited and worsens as the wavelength is reduced

and the aluminum (Al) mole fraction is increased owing to a

reduction of electron and hole concentrations, low injection

efficiencies, and a high density of crystalline defects. In partic-

ular, threading dislocations act as carrier traps that inhibit radi-

ative recombination thus increasing the power threshold for

stimulated emission or even preventing it altogether.9 Thus,

improvements in material quality are required for AlxGa1�xN

(x> 0.50) to achieve high-power operation and lasing in the

DUV range.

The majority of previously reported devices have been

grown heteroepitaxially on non-native substrates such as sap-

phire or SiC. However, electrical-injection LDs are thus far

limited to an emission wavelength of 336 nm due to limita-

tions in effectively doping AlGaN with high Al content.10

Optically pumped AlGaN multi-quantum well (MQW) struc-

tures have been reported for wavelengths as low as 241.5 nm

on SiC; however, the threshold power density remains

high.11 While foreign substrates are readily available at

reasonable cost, the differences in lattice constant and ther-

mal expansion coefficient with III-nitride materials lead to

the formation of high densities of threading dislocations and

even cracking for high Al-content AlxGa1�xN.12 Several

strain-relief techniques including superlattices13 and epitax-

ial lateral overgrowth schemes14 have been reported to

improve performance through reductions in defect density,

yet stimulated emission below 300 nm remains difficult to

achieve and is rarely reported.

Native AlN substrates have recently become available to

produce DUV optoelectronic devices. Prepared from high-

quality bulk crystal by sublimation-recondensation of AlN

powder, these substrates enable homoepitaxial growth of

AlN buffer layers,15 leading to a reduced threading disloca-

tion density in the subsequent AlxGa1�xN active region. The

elimination of thermal mismatch between the substrate and

epitaxial layers also enhances the growth and performance of

the device by eliminating cracks that form during the thermal

cycle and cool-down. There have been a handful of reports

of growth on native-AlN substrates for both electrically and

optically pumped UV devices,16,17 but efficiencies remain

low and thus continued development is underway for better

performance at lower wavelengths.

In this study, we have used an Al-polar (0001) native AlN

substrate grown by physical vapor transport. Prior to growth,

the AlN substrates were prepared in a 3:1 H2SO4:H3PO4 solu-

tion at 90 �C to remove the native surface oxide.15 An in situ
high-temperature ammonia treatment was then used to further

etch the oxide to enable efficient AlN growth. The epitaxial

structure was grown in an Aixtron 6� 2 in. metalorganic

chemical vapor deposition (MOCVD) reactor with close-

coupled showerhead. Due to the low adatom mobility of Al

atoms, a higher temperature and lower V/III ratio are required

for AlN compared to GaN to promote two-dimensional growth

and smooth surface formation.18–20 Thus, we have used a rela-

tively high temperature of 1155 �C and low V/III ratio for the
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AlN buffer (<100) and the ternary active region (�400) for

this structure. An even higher growth temperature would be

ideal; however, inherent limitations in the reactor design limit

us from increasing the temperature further without risking

damage to the system.

The epitaxial structure designed for this study was spe-

cifically optimized for optical pumping experiments. A

cross-section of the layer structure is shown in Figure 1. The

active region consists of a 10-period MQW structure, with

3 nm Al0.60Ga0.40N wells and 5 nm Al0.75Ga0.25N barriers,

between a 200 nm AlN regrowth buffer layer and a 10 nm

AlN cap layer. The cap layer serves as a surface passivation

layer for photo-generated carrier confinement, and also as a

cladding layer. Although increasing the thickness of this

layer would increase the transverse optical confinement fac-

tor of the active region, the absorption losses associated with

using a 193 nm ArF excitation laser mandate that this layer

remains thin. An excitation source with higher wavelength

would allow us to grow thicker cladding layers, transparent

to the excitation laser, for improved optical confinement and

lower threshold power density. However, the active region

would also be transparent to a 248 nm KrF laser, thus, con-

straining the design parameter space for a sub-248 nm photo-

pumped emitter. The omission of any underlying AlGaN

layers for the purpose of strain reduction serves to enhance

the confinement of the optical field within the active region.

Even without such strain-engineered layers, high crystal-

quality was still maintained as measured by atomic force

microscopy illustrated in Figure 2: terraced step-flow is

observed, characteristic of two-dimensional layer-by-layer

III-nitride epitaxial growth. The RMS roughness is 0.37 nm

and 0.32 nm at 10� 10 lm2 and 5� 5 lm2 measurements,

respectively, indicating slight roughening during growth on

the AlN substrate with RMS roughness of 0.1 nm at

5� 5 lm2, while maintaining a low defect density.

Following growth, the wafer was thinned to 80 lm by

lapping the AlN substrate and a Fabry-Perot cavity was

formed using cleaved m-plane facets with a 1.23-mm long

resonant cavity. Neither high-reflection nor anti-reflection

coating was used. The laser bars were optically pumped by

an ArF Excimer laser (k¼ 193 nm) with a pulse width of

20 ns at a repetition rate of 10 Hz. The laser beam passes

through an optical aperture with width of 0.1 cm and length

of 1.27 cm and was illuminated over the surface of the

cleaved bars. Attenuators were inserted to vary the pump

power and a Glan-Laser a-BBO (a-BaB2O4) polarizer was

used to measure the polarization of light emission. An opti-

cal fiber was placed in the proximity of the m-plane facets

for spontaneous and stimulated light emission detection (as

shown in Figure 3). The photon emission was collected and

analyzed using an Ocean Optics Maya 2000 Pro spectrome-

ter with a spectral resolution of 0.2 nm.

The photon emission spectrum at room-temperature

with different pumping power densities is shown in Figure 4.

The peak emission wavelength was k¼ 243.5 nm with the

spectral linewidth reducing to 2.1 nm at the maximum meas-

ured pump-power of 620 kW/cm2. The optical output power

as a function of excitation density (L-L curve) is shown in

Figure 5 demonstrating a distinct threshold characteristic at a

threshold pump power density (Pth) of 427 kW/cm2. The

stimulated emission output increases linearly with the pump-

ing power density beyond the threshold. The measured Pth is

about three times lower than previously reported photo-

pumped UV lasers grown on 4H-SiC at a similar emission

wavelength of 241.5 nm.11 Measurements were also taken

from the cþ plane (Al-face c-plane) surface. The linewidth

of the spontaneous emission was 12 nm at 600 kW/cm2.

The transverse electric (TE) and transverse magnetic

(TM) emission spectra from the cleaved laser bar operating

above threshold are shown in Figure 6. We observed that the

stimulated emission is strongly TE polarized with the degree

of polarization (P), defined as P¼ (ITE� ITM)/(ITEþ ITM),

greater than 0.9. It is also noted that the TE mode emission

wavelength is about 1.6 nm longer than that for TM mode

emission. For AlGaN-based lasers, the polarization of the

light emission is predicated to switch from the TE mode to

FIG. 1. Cross-section schematic of the DUV AlGaN MQW laser structure.

FIG. 2. Atomic-force microscopy measurements of

the structure grown on (0001) AlN substrate taken

at (a) 5� 5 lm2 and (b) 10� 10 lm2.
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the TM mode as the emission wavelength decreases from

near UV to deep UV with corresponding increased AlN mole

fraction since the topmost valence band transitions from

heavy hole (TE polarization) to crystal-field-split hole (TM

polarization).21,22 Our results (along with those of Refs. 7,

17, and 23) suggest a mixing of these valence bands with a

dependence on composition and strain state enables TE-

mode gain to continue to dominate into the DUV region,

while TM-mode sees a modest boost.

In summary, we have used native AlN substrates to

grow AlGaN/AlN based MQW heterostructures by MOCVD

for DUV stimulated emission. The elimination of thermal

mismatch reduction in the strain state between the substrate

and the AlN buffer layer yielded reduced defect formation

compared to conventional substrates such as sapphire, thus

enabling laser action. The peak wavelength demonstrated

was at 243.5 nm with a threshold power density of 427 kW/

cm2 and dominating TE polarization mode. These results

confirm the viability of AlN substrates for future develop-

ment of DUV AlGaInN based laser diodes.
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