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Artificial neural networks have shown effectiveness in the
inverse design of nanophotonic structures; however, the
numerical accuracy and algorithm efficiency are not ana-
lyzed adequately in previous reports. In this Letter, we
demonstrate the convolutional neural network as an inverse
design tool to achieve high numerical accuracy in plasmonic
metasurfaces. A comparison of the convolutional neural
networks and the fully connected neural networks show that
convolutional neural networks have higher generalization
capabilities. We share practical guidelines for optimizing the
neural network and analyzed the hierarchy of accuracy in the
multi-parameter inverse design of plasmonic metasurfaces.
A high inverse design accuracy of ±8 nm for the critical
geometrical parameters is demonstrated. © 2020 Optical
Society of America

https://doi.org/10.1364/OL.387404

The deep neural networks (DNNs) have been proven to be
powerful in solving complicated problems in various fields
ranging from biology [1], chemistry [2], physics [3], to geology
[4]; and from theoretical calculations [5] to engineering appli-
cations [6]. In the field of nanophotonics [7], the DNNs have
been employed to design plasmonics structures, metasurfaces
[8], integrated photonic devices [9], and nanocavities [10]. The
popularity of the DNNs stems from the fact that they can handle
complex problems requiring high scientific rigor and precision.
Instead of expressing and solving the physical equations in an
explicit way, the DNNs can extract the physics hidden in the
statistics of data and memorize them as network parameters
through the learning process. In principle, the DNNs can
approximate any physical phenomenon, provided that the
capacity is high enough. However, the tuning of the DNNs is
a nontrivial task. The performance of the DNNs is highly sen-
sitive to the training data, DNN architecture, hyperparameter
tuning, and regularization techniques. All these aspects have to
be considered before applying the DNNs to a specific problem.

Localized surface plasmons (LSPs) of metals are immensely
important for applications such as surface-enhanced spectros-
copy [11,12], sensing [13,14], optoelectronic devices [15–17],
and imaging [18,19]. The aggregation of plasmonic nanos-
tructures gives rise to rich physics phenomena including Fano
resonances [20,21] and complicated hybridization [22,23].

Harnessing the power of the coupling LSPs can enable designs
of optical structures with an on-demand spectral response.
Conventionally, such a task requires a deep understanding
of the physics by solving Maxwell’s equations using finite-
difference time-domain (FDTD) and finite-element method
(FEM). The design methods typically comprise the sweeping of
parameters and trial and error. While this is not so difficult in a
simple symmetric system with fewer parameters, the challenge
grows exponentially as the problem becomes asymmetric and
complex [24]. For instance, the unit cell considered here can
be described by six parameters, which means searching for the
optimal value in a six-dimensional space. Since the unit cell size
is sub-wavelength, the coupling between the unit cells has to
be considered, making the system design more complicated.
Recently, there is a growing interest in tackling these problems
using fully connected (FC) DNNs [9,24–27] and convolutional
neural networks (CNN) [28]. However, a comparison of these
two types of structures in the photonics inverse design problem
is still lacking. Moreover, the numerical accuracy of neural
networks in the multi-parameter inverse design problem has not
been addressed adequately in the previous reports.

In this work, we demonstrate that convolutional neural
networks (CNNs) are significantly better in the inverse design
of plasmonic metasurfaces based on a target spectrum. The
advantages are two-fold. First, since the starting point of such
an inverse design problem is usually a target spectrum where the
valleys and the peaks are the defining features, the CNNs can
extract these features and perform analysis on them, a process
which has been extensively demonstrated in image recognition
[29]. In this sense, the CNNs yield more accountability for the
inverse design process. Second, the connections of the CNNs are
sparse [30]; namely, only a small patch of neurons are connected
to the previous layer. It is a way to remove the redundant infor-
mation, thus reducing the difficulty in training and improving
both accuracy and generalization capabilities [31]. In the inverse
design problem based on the spectral response, the peaks and
valleys are the main important information. The CNNs can
take advantage of this and allow for more accurate and robust
inverse design.

We consider a plasmonic metasurface whose unit cell consists
of three gold (Au) nanodisks as shown in Fig. 1(a). The fabrica-
tion process is as follows. First, a layer of Au (50 nm) is deposited
on a double-side polished sapphire substrate by sputtering;
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Fig. 1. (a) SEM image of the fabricated plasmonic metasurface, and
the scale bar is 1 µm. (b) Schematic of geometrical parameters of the
square unit cell. (c) Illustration of how the symmetry of the structure
can cause data inconsistency.

Fig. 2. Detailed parameters of the CNN.

subsequently, the photoresist is spin-coated on the substrate and
electron-beam lithography is used to write the pattern. After
developing, the Au is etched by inductively coupled plasma
etching (ICP) with the photoresist as the etching mask. Six
parameters can be defined to fully describe the geometry of a
unit cell. They are the diameters of the three disks p1, p2, p3,
the inter-disk distances p4, p5, and the angle p6 as shown in
Fig. 1(b). Previously, stand-alone plasmonic trimer systems have
been shown to exhibit rich physics phenomena by virtue of the
interactions between the plasmonic nanoparticles [22,32,33].

An illustration of the detailed network structure can be found
in Fig. 2. It is comprised of convolutional layers (Conv1D)
and linear layers. The input data of the neural network are the
target spectra with an array size of 1× 300. In each Conv1D
layer, F stands for the filter size, and C is the number of channels.
Each Conv1D layer is followed by a rectified linear unit (ReLu)
activation function, a max-pooling layer (Pool), and a batch nor-
malization layer (BN). Each linear layer is followed by a ReLu
and a BN layer. A total number of four convolutional layers
and four linear layers are employed. After varying the number
of the Conv1D layers and the linear layers, we find the current
one is optimal. The output layer has six nodes representing the
parameters that define a unit cell of the plasmonic metasurface.

We generate 25,000 sets of training data with randomly
assigned parameters p1-p6 using a commercial FDTD solver
(FDTD solutions, Lumerical Inc). A broadband plane wave
with wavelength ranging from 600 to 1600 nm is launched
toward the structure from the +z direction [Fig. 1(b)]. The
boundary condition in the x- and y-directions is periodic, and
those in the z-direction are perfectly matched layers (PML). The
unit cell length L is 700 nm. The polarization of the source is
in the x-direction. As a proof of concept, we set the thickness
as a constant value of 50 nm; however, it can also be taken as a
parameter for the network to learn. The absorption spectra are

collected as the training data and the parameters p1-p6 are saved
as the training labels for the CNN.

We note that the symmetry of the model could pose some
challenges in the data generation. The conundrum is shown
in Fig. 1(c). By mirroring the whole structure in the x and
y-directions, the spectral response remains the same. But the
structure is described by four different sets of parameters p1-p6.
When the spectral data is fed to the CNN during the training,
it does not know which set of parameters to converge to. While
a few abnormal data points in the data set would not harm the
performance of the CNNs, the symmetry problem presented
here could give rise to a systematic data inconsistency with four
subsets of conflicting data in the total set. The performance of
the network will deteriorate greatly. Since such data inconsis-
tency from symmetry can be a common occurrence, and it is not
straightforward to find out, special attention has to be paid to
eliminate these problems in any inverse design problem using
the DNN techniques. Such a non-unique solution problem
has been noted and solved by an extra network structure to pick
out only one set of solutions [27], which increases the training
difficulty and the size of the neural network. The origin of the
problem is the symmetry in this work, so a more economical and
robust solution is to just restrict the symmetry during the data
generalization process. Therefore, we fix the center position of
d1 to be (0, 0) and the angle θ to be 18◦ as shown in Fig. 2(a).
Meanwhile, the rotation angle p6 is set to be less than 90◦, and
the constraint p1> p2> p3 is imposed on the diameter. Thus
only one set of the configuration will be fed to the network,
eliminating the non-unique solution problem. Another impor-
tant point to consider is the normalization of the training data.
The parameters p1-p6 are on the order of 200, which is not
in the best range for the DNNs. Thus each of them is scaled
by 100 and shifted by −1 to be in the range of [−1, 1]. The
spectrum data is scaled by 4 and shifted by−1 to be in the range
of [−1, 1].

The whole data set is divided into three subsets: 16,000 for
training, 4000 for validation, and the rest of 5000 for testing.
The mean squared error (MSE) is the performance indicator of
the CNN as the loss function during training and as the error
function during validation. The loss function is minimized by
gradient descent using the Adam optimization algorithm [30]
in the training process. The learning rate is set as 0.01 initially,
and it is dropped by a factor of 1.2 every 50 epochs. The training
sets are fed to the network with batch sizes of 100. The training
and validation losses are obtained by a 5-fold cross-validation
procedure and are shown in Figs. 3(a) and 3(b). To make a com-
parison between the CNNs and FC DNNs, another model that
consists of only linear layers is built. In the FC DNN structures,
the convolutional layers are replaced by three linear layers with
the node numbers of 300, 900, and 2200, respectively. The
ReLu and BN layers are maintained after each linear layer. The
parameters are chosen based on the considerations to make
the FC DNN network balanced. However, the total trainable
parameters of these three layers alone are 2.25× 106, in con-
trast, the total trainable parameters of the Conv1D layers are
1260. We compare the CNN and FC DNN with and without
batch normalization in Fig. 3. A few sharp drops in Fig. 3(a)
can be discerned at epochs 100, 150, and 200 due to the learn-
ing rate modulation, which shows that the modulation of the
learning rate is helping to accelerate the training process.
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Fig. 3. (a) Training loss and (b) validation loss obtained during the
training process for different neural network architectures.

Fig. 4. Comparison of network prediction against FDTD values in
the testing set. The black dashed lines represent y= x, and the red lines
represent y= x± 8.

Without the batch normalization layers, the training loss
decreases continuously to almost zero while the validation
loss starts increasing after 100 epochs for both FC DNN and
CNN, which is a clear sign of overfitting [34]. However, with
the addition of the batch normalization layers, both the training
and validation loss stabilized to a relatively low value, which
indicates the batch normalization layers are helping to prevent
overfitting in both CNN and FC DNN. The comparison of
the FC DNN and the CNN is shown by the purple and cyan
curves in Figs. 3(a) and 3(b). The training loss in Fig. 3(a) for
both CNN and FC DNN converge to the same level, which
indicates that both are well-trained and have the capability to fit
training data well. However, the validation loss of the FC DNN
is twice higher than that of CNN, indicating poor generalization
capabilities, which can be attributed to the dense connections of
FC DNN [31,35,36].

After the CNN is trained, the spectra in the testing set are
fed to it and the predicted parameters p1-p6 are compared with
the initial values used to generate the spectra. Figure 4 shows
the comparison. The black and red dashed lines representing
y= x and y= x± 8, respectively, are plotted as guidelines. We
observe there is a hierarchy in the accuracy. The parameters
p1, p2, and p3 have the highest accuracy while the accuracy of
p4, p5, and p6 is lower. The parameters p1, p2, and p3 decide
the diameter of the three nanodisks. Hence, they are the most
important parameters defining the overall shapes of the spectra
and approximate peak and valley positions. The predicted p1,
p2, and p3 follow the trend of y= x closely and with 90% of
the points fall within the boundaries of y= x± 8 nm. The
parameters p4, p5, and p6 are related to the coupling strength
between disks, and therefore they are parameters to fine-tune

Fig. 5. (a) Comparison of the target spectrum, the spectral response
of the plasmonic metasurface predicted by the CNN, and the measured
spectrum of the fabricated metasurface. (b) Geometrical parameters
p1-p6 predicted by the CNN. (c) Charge distribution at the plasmonic
resonance wavelengths where black arrows indicate the direction of the
electric field. (d)–(f ) Normalized electric field intensity distribution at
the resonance peaks of (d) 680 nm, (e) 875 nm, and (f ) 1225 nm. The
scale bar applies to (d), (e), and (f ).

the spectrum. The parameter p5 has the lowest accuracy with
the maximum deviation as high as 40 nm. This is because the
parameter p5 controls the coupling between d1 and d2, which is
weak in this work since the polarization direction is largely per-
pendicular to the coupling axis. On the contrary, the parameter
p4 controls the coupling between d1 and d3, and the polariza-
tion is not always perpendicular to the coupling axis due to the
rotation of p6. Thus the accuracy of p4 is higher. This point will
be addressed in detail in the following paragraphs. The hierarchy
of the accuracy is an indication that the network is learning the
importance of each parameter p1-p6.

To further evaluate the performance of the proposed
approach, an arbitrary spectrum modified from the testing
data set with three plasmonic resonance peaks [the purple curve
in Fig. 5(a)] is fed to the CNN. Afterward, an FDTD simula-
tion is carried out using the predicted parameters p1-p6 to get
the absorption spectrum. The comparison between the target
spectrum and the one obtained from the network geometry
(the green curve) is shown in Fig. 5(a). There are three peaks
in the target spectrum at 680, 875, and 1225 nm, which are all
well fitted by the network predicted parameters. Figure 5(b)
shows the parameters p1-p6 predicted by the CNN. The meta-
surface is fabricated based on these parameters [Fig. 1(a)], and
the absorption spectrum [Fig. 5(a)] is measured by a VIS/NIR
spectrophotometer with a polarizer. There are some shifts and
broadening of the resonant peaks, which are mainly due to the
errors of the fabrication of small feature sizes down to 50 nm.
However, the overall resonant peak positions marked by black
arrows agree well with the prediction by the CNN. To inves-
tigate the origin of each plasmonic peak, we plot the charge
distribution and normalized electric field intensity distribution
at the peak wavelengths in Figs. 5(c)–5(f ). The electric field
direction is generally horizontal due to the polarization of the
incoming light [Fig. 5(c)]. Due to the hybridization of each plas-
monic mode, we observe the antibonding mode at 680 nm and
bonding mode at 1225 nm. At 875 nm, d1 shows quadrupole
modes due to the coupling with d3. We observe that the electric
field is much weaker between d1 and d2 compared to d1 and d3.
This is because the incident light is almost perpendicular to the
axis of d1 and d2, which results in reduced coupling strength
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[37,38]. Consequently, the parameter p5 has a higher error with
deviations up to 40 nm.

On the contrary, the interaction between d1 and d3 is more
prominent, as observed from the enhanced field between d1
and d3 in Figs. 5(c)–5(f ). This could be attributed to the smaller
size of d3 and the fact that the polarization is parallel to the axis
of d1 and d3. However, the rotation of d3 is controlled by p6,
and there are situations where the axis between d1 and d3 are
almost perpendicular to the polarization direction, such as the
case shown in Fig. 2(b). In these situations, the accuracy of p4
should deteriorate, however, we observe the accuracy of p4 is
consistently high. This is because the coupling between p2 and
p3 become prominent when p6 is small, thus p4 is still a critical
parameter. Despite the deviations of p5 and p6, the overall
accuracy is adequate, considering the deviation of±8 nm of the
critical geometrical parameters p1, p2, and p3 is merely 1.5% of
the shortest wavelength in this study (600 nm) and similar to the
resolution limit of state-of-the-art nanofabrication techniques.

In conclusion, we demonstrate the CNN as an excellent tool
to achieve high accuracy inverse design of plasmonic metasur-
faces. The superiority stems from the fact that it can recognize
the peaks and valleys of a spectrum and it is computationally
less costly. We also show that batch normalization can improve
the performance of the CNN. A high design accuracy of±8 nm
is achieved for the critical geometrical parameters. Analysis of
the results suggests the critical geometrical parameters possess
significantly smaller errors than the less important ones. The
technique and methodology can be applied to other inverse
designs of nanophotonics involving target spectra.
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