Mixed Precision Numerical Linear Algebra for Statistics Computations

Nick Higham
Department of Mathematics
The University of Manchester

https://nhigham.com

SIAM Conference on Computational Science and Engineering
March 1, 2021
<table>
<thead>
<tr>
<th>Precision</th>
<th>Type</th>
<th>Signif (t)</th>
<th>Exp</th>
<th>Range</th>
<th>$u = 2^{-t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>half</td>
<td>bfloat16</td>
<td>8</td>
<td>8</td>
<td>$10^{\pm38}$</td>
<td>3.9×10^{-3}</td>
</tr>
<tr>
<td>half</td>
<td>fp16</td>
<td>11</td>
<td>5</td>
<td>$10^{\pm5}$</td>
<td>4.9×10^{-4}</td>
</tr>
<tr>
<td>single</td>
<td>fp32</td>
<td>24</td>
<td>8</td>
<td>$10^{\pm38}$</td>
<td>6.0×10^{-8}</td>
</tr>
<tr>
<td>double</td>
<td>fp64</td>
<td>53</td>
<td>11</td>
<td>$10^{\pm308}$</td>
<td>1.1×10^{-16}</td>
</tr>
</tbody>
</table>

- **fp64, fp32, fp16** defined by IEEE Standard.
- **Bfloat16**: Google, Intel, Arm, NVIDIA.
Accelerators

\[D = C + AB \]

<table>
<thead>
<tr>
<th>Year of release</th>
<th>Device</th>
<th>Matrix dimensions</th>
<th>Input format</th>
<th>Output format</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>Google TPU v2</td>
<td>128 × 128 × 128</td>
<td>bfloat16</td>
<td>fp32</td>
</tr>
<tr>
<td>2017</td>
<td>Google TPU v3</td>
<td>128 × 128 × 128</td>
<td>bfloat16</td>
<td>fp32</td>
</tr>
<tr>
<td>2017</td>
<td>NVIDIA V100</td>
<td>4 × 4 × 4</td>
<td>fp16</td>
<td>fp32</td>
</tr>
<tr>
<td>2018</td>
<td>NVIDIA T4</td>
<td>4 × 4 × 4</td>
<td>fp16</td>
<td>fp32</td>
</tr>
<tr>
<td>2019</td>
<td>ARMv8.6-A</td>
<td>2 × 4 × 2</td>
<td>bfloat16</td>
<td>fp32</td>
</tr>
<tr>
<td>2020</td>
<td>NVIDIA A100</td>
<td>8 × 8 × 4</td>
<td>bfloat16</td>
<td>fp32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 × 8 × 4</td>
<td>fp16</td>
<td>fp32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 × 2 × 2</td>
<td>fp64</td>
<td>fp64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 × 8 × 4</td>
<td>TensorFloat-32</td>
<td>fp64</td>
</tr>
</tbody>
</table>
Loss of definiteness in a covariance/correlation matrix is a common problem.

- Missing or inconsistent data.
- Aggregation.
- Indefinite kernels in machine learning, needing a definite similarity matrix.

Another reason:

rounding a definite matrix to lower precision.

\[\text{fl}(A) = A + \Delta A, \quad \|\Delta A\|_2 \leq u\|A\|_2, \]

so \(\lambda_{\text{min}} \) is perturbed by \(u\lambda_{\text{max}} \).
General A and b given in precision $u = u_{64}$.

1. Compute LU fact’n (w/pivoting) in **mixed precs** u_{32}, u_{16}.
2. Solve $\tilde{L}\tilde{U}x_1 = b$ in **prec** u_{32}.
3. For $i = 1, 2, \ldots$
 - $r_i = b - Ax_i$
 prec u_r
 - Solve $MAd_i = Mr_i$ by GMRES where
 $M = \tilde{U}^{-1}\tilde{L}^{-1}$
 prec u
 - $x_{i+1} = x_i + d_i$
 prec u

- **Carson & H (2017, 2018).**

- Implemented with $u_r = u$ in **MAGMA 2.5.0 (2019)**, **TCAIRS** in NVIDIA cuSOLVER library.
Performance on One NVIDIA GV100

Haidar et al. (2020). Factor 4 speedup over fp64.

Performance of solving $Ax=b$ to the FP64 accuracy

- FP16-TC->64 dhgesv
- FP32->64 dsgesv
- FP64 dgesv

Matrix size: 2k, 4k, 6k, 8k, 10k, 14k, 18k, 22k, 26k, 30k, 34k, 40k

Tflop/s vs. matrix size

Nick Higham

Mixed Precision Numerical Linear Algebra
Obvious approach

- Replace LU \((A = LU)\) by Cholesky \((A = R^T R)\).
- Replace GMRES by conjugate gradient (CG) method with symmetric (two-sided preconditioning).
Adapt to Symmetric Positive Definite A

Obvious approach

- Replace **LU** ($A = LU$) by **Cholesky** ($A = R^T R$).
- Replace **GMRES** by **conjugate gradient** (CG) method with symmetric (two-sided preconditioning).

Flaws

- Cholesky of $f_{16}(A)$ might fail.
- IR using CG might not converge.

Solution to first flaw: perturb A.
Let $A = DHD$, $D = \text{diag}(a_{ii}^{1/2})$. Then $h_{ii} \equiv 1$.

- **Wilkinson (1968)**: Cholesky succeeds if $c_n \kappa_2(A) u < 1$.
- **Demmel (1989)**: Cholesky succeeds if $\lambda_{\min}(H) \gtrsim (n + 1) u$.

These results suggest

\[
\text{PertA} \quad A \leftarrow A + \Delta A_1, \quad \Delta A_1 = c_n \lambda_{\max}(A) u I.
\]

\[
\text{PertH} \quad A \leftarrow D(H + \Delta H_1)D, \quad \Delta H_1 = c'_n u I,
\]
\[
= A + \Delta A_2, \quad \Delta A_2 = c'_n u D^2.
\]

- Previous work concerned with roundoff uses **PertA**.
Consider double precision matrix

\[
A = \begin{bmatrix}
10^{40} & \times & \times \\
\times & 10^{20} & \times \\
\times & \times & 1
\end{bmatrix},
\]

and set \(c_n = c'_n = 1 \).

- **PertA**: \(\Delta A_1 \approx 10^{40} ul \) and \(a_{33} \) is lost.

- **PertH**: changes \(a_{33} \) to \(1 + u \): a small relative perturbation.
Given spd $A \in \mathbb{R}^{n \times n}$ in precision u compute approx Cholesky fact. Positive integer c is a parameter.

1: $A^{(\ell)} = \text{fl}_{16}(A + c u_{16} \text{diag}(A))$
2: Attempt Cholesky fact. $A^{(\ell)} = R^T R$ in precision u_{16}.
3: if Cholesky failed then
4: $c \leftarrow 2c$, goto line 1
5: end if

- The Cholesky may be mixed precision.
- For fp16 need diagonal scaling to avoid overflow (H, Pranesh & Zounon, 2019).
If we replace GMRES with CG then

- Solve $MAd_i = Mr_i$ by GMRES where $M = \hat{R}^{-T}\hat{R}^{-1}$ becomes
 - Solve $\tilde{A}d_i = (\hat{R}^{-T}A\hat{R}^{-1})(\hat{R}d) = \hat{R}^{-T}r_i$ by CG.

The error analysis exploits backward stability of GMRES.

For PCG (or any Krylov solver based on 3-term recurrence) we have only (Greenbaum, 1997)

$$b'\text{err} \leq O(u) \min(\kappa_2(A)^{1/2}, \kappa_2(\hat{R}))$$
Abdelfattah, Tomov & Dongarra (2020) implement this alg for $Ax = b$ using fp32/fp16 for the Cholesky fact’n.

With $n \leq 42,000$, speedup ≤ 4.7 over a double precision solver.
\[
\min_x \|Xb - y\|_2, \quad X \in \mathbb{R}^{m \times n}, \quad m \geq n = \text{rank}(X).
\]

statistics notation.
Extension to Least Squares Problem

\[
\min_x \|Ax - b\|_2, \quad A \in \mathbb{R}^{m \times n}, \quad m \geq n = \text{rank}(A).
\]

Solution satisfies normal equations \(A^T Ax = A^T b \).

Numerical analysts prefer QR factorization because

- Avoids loss of information in forming \(A^T A \).
- Avoids condition squaring effect.
- Normal equations method is not always backward stable.

But normal equations is faster.
Assume A is \textbf{well conditioned}.

- Compute $C = A^T A$ at precision u_f.
- Compute the \textbf{Cholesky factorization}
 \[C + c u_f \text{diag}(c_{ii}) = R^T R \]
 in precision u_f.
 (If Cholesky factorization failed $c \leftarrow 2c$ and repeat.)
- Solve
 \[A^T A x = A^T b \]
 by \textbf{GMRES-IR}, computing $r_i = A^T (b - A x_i)$ at precision u_r and round r_i to precision u.
IR convergence test is backward error $\leq nu$.
Max $\kappa_2(A) = 2 \times 10^4$. Precisions ($u_f, u, u_r$).

<table>
<thead>
<tr>
<th>Matrix</th>
<th>(m, n)</th>
<th>half, single, double</th>
<th>single, double, double</th>
</tr>
</thead>
<tbody>
<tr>
<td>divorce</td>
<td>(50,9)</td>
<td>4 (2)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Cities</td>
<td>(55,46)</td>
<td>11 (2)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>ash219</td>
<td>(219,85)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>WorldCities</td>
<td>(315,100)</td>
<td>3 (1)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>ash331</td>
<td>(331,104)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>ash608</td>
<td>(608,188)</td>
<td>1 (1)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>ash958</td>
<td>(958,292)</td>
<td>4 (2)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>illc1033</td>
<td>(1033,320)</td>
<td>13 (1)</td>
<td>24 (3)</td>
</tr>
<tr>
<td>well1033</td>
<td>(1033,320)</td>
<td>12 (1)</td>
<td>3 (2)</td>
</tr>
</tbody>
</table>
Conclusions

- $A \leftarrow A + cu_f \text{diag}(A)$ before Cholesky in low precision.

- **Cholesky-based GMRES-IR** works as well as LU form and gives slightly better speedups on GPUs.

- Can solve **LS problem** with GMRES-IR on normal equations for well conditioned A.

- Can replace GMRES with CG in practice.

- For more ill conditioned LS problems, see *Three-Precision GMRES-Based Iterative Refinement for Least Squares Problems* (Carson, H & Pranesh). Talk by **Pranesh, MS233, Thu 9.45 AM EST**.

References follow ...

Massimiliano Fasi, Nicholas J. Higham, Mantas Mikaitis, and Srikara Pranesh.
Numerical behavior of NVIDIA tensor cores.

Azzam Haidar, Harun Bayraktar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham.
Mixed-precision iterative refinement using tensor cores on GPUs to accelerate solution of linear systems.

Nicholas J. Higham, Srikara Pranesh, and Mawussi Zounon.

Squeezing a matrix into half precision, with an application to solving linear systems.