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Analysis of large datasets and prediction

Goal: analyse a large dataset
Need to use a dense cov. matrix C of size 2,000,000 x 2,000,000
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We show how to:

1. reduce storage cost from 32TB to 16 GB

2. approximate Cholesky factorisation of C, its determinant,
inverse in 8 minutes on modern desktop computer.

3. make prediction



The structure of the talk «S

1. Motivation: improve statistical models, data analysis,
prediction

2. ldentification of unknown parameters via maximizing Gaussian
log-likelihood (MLE)

Tools: Hierarchical matrices [Hackbusch 1999]
Matérn covariance function, joint Gaussian log-likelihood
Error analysis

Prediction at new locations
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Comparison with machine learning methods



Identifying unknown parameters

Given:

Let s1,...,s, be locations.

Z={Z(s1),...,2Z(sn)} ", where Z(s) is a Gaussian random field
indexed by a spatial location s € RY, d>1.

Assumption: Z has mean zero and stationary parametric
covariance function, e.g. Matérn:

c(8) = r%z) (2—;)” K, (%) Y72, 0= (020, 0,72).

To identify: unknown parameters 8 := (02, v, £, 72).



Identifying unknown parameters

Statistical inference about @ is then based on the Gaussian
log-likelihood function:

£(C(0)) = £(6) = ~ Hlog(2r) — 31ogIC(0) — 527 C(0) 2, (1)

where the covariance matrix C(8) has entries

C(S,‘—Sj;o), i,j: 1,...,n.

The maximum likelihood estimator of 6 is the value 6 that
maximizes (1).



H-matrix approximations of C, L and C!

‘H-matrix approximations of the exponential covariance matrix
(left), its hierarchical Cholesky factor L (middle), and the zoomed
upper-left corner of the matrix (right), n = 4000, ¢ = 0.09,
v=0502=1.



What will change after 7{-matrix approximation?

Approximate C by C*

ok W=

7.

How the eigenvalues of C and C* differ ?

How det(C) differs from det(C*) ?

How L differs from L* ? [Mario Bebendorf et al]

How C~1 differs from (C*)~! ? [Mario Bebendorf et al]
How £(6, k) differs from £(8)?

What is optimal H-matrix rank?

How 67t differs from 67

For theory, estimates for the rank and accuracy see works of
Bebendorf, Grasedyck, Le Borne, Hackbusch,...



Details of the parameter identification

To maximize the log-likelihood function we use the Brent's method
(combining bisection method, secant method and inverse quadratic
interpolation) or any other.

1. C(6) ~ C(0,¢).

2. C(6,k) = L(6, k)L(6,k)T

3. ZTC1Z=2Z"T(LLT)'Z =vT -v, where v is a solution of
L(8, k)v(0) := Z.

log det{E} = log det{[ET} = log det{H A = 22 log\;,

£(6, k) = —Zlog(2m) Zlog{L,, @ k)}”( (6) - v(8)). (2)
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Dependence of log-likelihood ingredients on parameters, n = 4225.
k = 8 in the first row and kK = 16 in the second.



Remark: stabilization with nugget

To avoid instability in computing Cholesky, we add: Em =C+ 72
Let \; be eigenvalues of C, then eigenvalues of C,, will be \; + 72

logdet(Con) = log [y (Ar +72) = 37, log(A; + 7).
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(left) Dependence of the negative log-likelihood on parameter ¢
with nuggets {0.01,0.005,0.001} for the Gaussian covariance.
(right) Zoom of the left figure near minimum; n = 2000 random
points from moisture example, rank k =14, 72 =1, v = 0.5.

10



Error analysis

Theorem (1)

Let C be an H-matrix approximation of matrix C € R"™ " such that
p(ClC-N<e<1.

Then _
|logdet C — logdet C| < —nlog(1 — ¢), (3)

Proof: See [Ballani, Kressner 14] and [Ipsen 05].
Remark: factor n is pessimistic and is not really observed
numerically.
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Error in the log-likelihood

Theorem (2)

Let C ~ C € R™" and Z be a vector, ||Z|| < ¢p and [|C7H]| < c.
Let p(C71C —1) < e < 1. Then it holds

~ 1 ~ 1 1 =
I£(6) ~ £(6)] = 5 (logIC| — loglC]) + 512" (¢ - T) 7
1 1 T -1 ~—1 -1
< —5 - nlog(1 —¢) + 512 (c c-C c)c Z|

1 1
< —E-nlog(l—e)—&— Ecg-cl FE.
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‘H-matrix approximation

€ accuracy in each sub-block, n = 16641, v = 0.5,
c.r.=compression ratio.

c Jlog|C| — log/Cl| | |'BLEL0BICL | e — € | Mgplz | - @) | erin%

£ =0.0334

le-1 3.2e-4 1.2e-4 7.0e-3 7.6e-3 2.9 9.16

le-2 1.6e-6 6.0e-7 1.0e-3 6.7e-4 9.9e-2 9.4

le-4 1.8e-9 7.0e-10 1.0e-5 7.3e-6 2.0e-3 10.2

1e-8 4.7e-13 1.8e-13 1.3e-9 6e-10 2.1e-7 127
7=10.2337

Ted 9805 15e5 315 T4e5 25e1 95

le-8 1.45¢-9 2.3e-10 1.le8 1.5e-0 4e-5 11.3

log|C| = 2.63 for £ = 0.0334 and log|C| = 6.36 for ¢ = 0.2337.
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Boxplots for unknown parameters
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Moisture data example. Boxplots for the 100 estimates of (¢, v,
02), respectively, when n = 32K, 16K,8K,4K,2K. H-matrix with
a fixed rank k = 11. Green horizontal lines denote 25% and 75%
quantiles for n = 32K.
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size, in bytes

How much memory is needed?

6.5

55

x10°

x10°8

size, in bytes
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0, v =0.325, 0” = 0.98

25

0.2

0.4

0.6 0.8 1 1.2 1.4
v, L =0.58, 0> = 0.98

(left) Dependence of the matrix size on the covariance length ¢,
and (right) the smoothness v for two different #H-accuracies

e = {104,106}
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Error convergence

—E— Spectral norm, L=0.1, nu=1|

Spectral norm, L=0.2

-_2 = Frob. norm, L=0.1

= %= Frob. norm, L=0.2
—— Spectral norm, L=05
=%~ Frob. norm, L=0.5

log(rel. error)

log(rel. error)

—5— Spectral norm, L=0.1, nu=0.5|

=== Frob. norm, L=0.1
Spectral norm, L=0.2
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Convergence of the H-matrix approximation errors for covariance
lengths {0.1,0.2,0.5}; (left) v =1 and (right) v = 0.5,
computational domain [0, 1]2.
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How log-likelihood depends on n?
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Figure: Dependence of negative log-likelihood function on different
number of locations n = {2000, 4000, 8000, 16000, 32000} in log-scale.
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Time and memory for parallel H-matrix approximation

Maximal # cores is 40, v = 0.325, / = 0.64, 02 =0.98

n C L’
time size  kB/dof | time  size Il = (ELT)~C|)2
sec. MB sec. MB
32.000 3.3 162 5.1 24 1727 2.4-.107°
128.000 13.3 776 6.1 13.9 881.2 1.1-1072
512.000 52.8 3420 6.7 77.6 4150 3.5.1072
2.000.000 | 229 14790 7.4 473 18970 1.4-1071

Dell Station, 20 x 2 cores, 128 GB RAM, bought in 2013 for
10.000 USD.
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Prediction

Let Z = (Z4, 22)T has mean zero and a stationary covariance, Z; -
known, Z> unknown.

Cii Co2
C=
{Cm sz,]

We compute predicted values
Zy = C (s

Z»> has the conditional distribution with the mean value C21C1_1121
and the covariance matrix Cop — C21C1_11C12.

10



2021 KAUST Competition

We participated in 2021 KAUST Competition on Spatial
Statistics for Large Datasets.

You can download the datasets and look the final results here
https://cemse.kaust.edu.sa/stsds/
2021-kaust-competition-spatial-statistics-large-datasets

20


https://cemse.kaust.edu.sa/stsds/2021-kaust-competition-spatial-statistics-large-datasets
https://cemse.kaust.edu.sa/stsds/2021-kaust-competition-spatial-statistics-large-datasets

Prediction

Prediction for two datasets. The yellow points at 900.000 locations
were used for training and the blue points were predicted at
100.000 new locations.
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Machine learning methods to make prediction

k-nearest neighbours (kNN): For each point x find its k nearest
neighbors xi, ..., xx, and set: y(x) = %Zle Vi.

Random Forest (RF): a large number of decision (or regression)
trees are generated independently on random sub-samples of data.
The final decision for x is calculated over the ensemble of trees by
averaging the predicted outcomes.

Deep Neural Network (DNN): fully connected neural network

{

Input layer consists of two neurons (input feature dimensionality),
and output layer consists of one neuron (predicted feature

dimensionality).
bl



Prediction by kNN

Prediction obtained by the kNN method. The yellow points at
900.000 locations were used for training and the blue points were
predicted at 100.000 new locations. One can see a very well

alignment of both. .



Conclusion

v

With H-matrices you can approximate Matérn covariance
matrices, Gaussian log-likelihoods, identify unknown
parameters and make predictions

MLE estimate and predictions depend on H-matrix accuracy
parameter identification problem has multiple solutions

Investigated dependence of H-matrix approximation error on
the estimated parameters

Each of ML methods needs fine-tuning stage to optimize its
hyperparameters or architecture.

24



Open questions and TODOs

vvyyy v

v

The Gaussian log-likelihood function has some drawbacks for
very large matrices

How to skip/avoid redundant data?
A good starting point for optimization is needed
a “preconditioner” (a simple cov. matrix) is needed

‘H-matrices become expensive for large number of parameters
to be identified

error estimates are needed
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