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Abstract
We report on the passivation of surface states of Al0.5Ga0.5N epilayers by employing
self-assembled monolayers (SAMs) of organic molecules, which led to a significant
improvement in the performance of Al0.5Ga0.5N based solar-blind photodetector. The formation
of SAM of meso-(5-hydroxyphenyl)-10,15,20-tri(p-tolyl) porphyrin (ZnTPP(OH)) on the
surface of Al0.5Ga0.5N was probed by contact angle measurement, x-ray photoelectron
spectroscopy, and atomic force microscopy. The successful passivation of surface states was
confirmed by Kelvin probe force microscopy as a significant decrease in the surface potential of
Al0.5Ga0.5N by ∼280 mV was observed. The inference was supported by a four-fold increase in
the photoluminescence intensity of the near-band edge emission peak upon passivation. As a
result, the dark current of the as-fabricated solar-blind photodetector reduced by two orders of
magnitude, without compromising with the magnitude of the photo current at 270 nm. The role
of SAM was evident in improving the performance of the photodetector as the peak value of
photo-to-dark current ratio enhanced by ∼36 times. The peak responsivity of the photodetector
increased from 1.6 to 2.2 mA W−1 at 10 V. The significant reduction in the dark current and
enhancement in the responsivity led to an improvement in the specific detectivity by ∼10 times.
Additionally, the response speed of the photodetector was found to improve significantly from 4
to 0.5 s.
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1. Introduction

The efficient detection of ultraviolet (UV) light is vital for
a wide range of applications such as disinfecting bio-agents,
water purification, flame detection, early missile warning sys-
tems, UV dosimetry, UV astronomy, and space missions
[1–3]. For most of these applications, along with UV detec-
tion, it is important to get rid of background signals of vis-
ible or infra-red radiations from the sun. This has led to the
focus on fabricating state-of-the-art ‘solar-blind’ photodetect-
ors. A solar-blind photodetector is the one which is insens-
itive to the photons with wavelengths longer than ∼285 nm
[4–8]. The wide bandgap semiconductors, viz. AlxGa1−xN,
AlN, SiC, Ga2O3 and diamond are suitable for fabricating
such photodetectors [8–10]. Out of these semiconductors,
AlxGa1−xN, the alloy of GaN and AlN, has a direct bandgap
which can be tuned from 3.4 eV (x = 0) to 6.2 eV (x = 1).
The alloys with higher concentrations of Al (x⩾ 0.5) are suit-
able for realizing solar-blind operation [11]. Furthermore, the
material exhibits extraordinary properties of high temperat-
ure robustness, chemical and radiation hardness, making it the
preferable candidate for fabricating robust solar-blind photo-
detectors [8, 12–17]. However, AlxGa1−xN is plagued with
a large density of surface states (∼1013 charges cm−2). As
a result of these surface states, trap-assisted tunneling (TAT)
becomes one of the dominant current transport mechanisms
which leads to a large dark current in the photodetectors
[18–21]. The increase in dark current results in poor photo-
to-dark current ratio (PDCR), responsivity, and speed of the
photodetector, thereby degrading its performance [18, 22, 23].
Therefore, to realize the true potential of AlxGa1−xN for solar-
blind photodetection, it is necessary to passivate these surface
states.

In this work, we have opted for a bottom-up approach
based on self-assembled monolayers (SAMs) of porphyrin
(ZnTPP(OH)) to passivate the surface states of Al0.5Ga0.5N
epilayer grown over AlN template on sapphire (refer
to figures 1(a)–(c)). Consequently, the performance of
metal–semiconductor–metal (MSM) solar-blind photode-
tector fabricated on passivated Al0.5Ga0.5N epilayer (shown
in figure 1(d)) was found to improve significantly. The
ZnTPP(OH) molecule can be visualized to consist of three
parts: a head group, an end group and a backbone. The head
group is chemically bonded to the hydroxylated Al0.5Ga0.5N
epilayer, as illustrated in figure 1(e) (explained later). The
end group remains away from the Al0.5Ga0.5N surface, and
backbone links the head group to the end group [24–28]. The
reportedmethod of wet passivation opens up the route to easily
reproducible, less error-prone and cost-effective passivation
schemes for AlxGa1−xN, which can improve the performance

of AlxGa1−xN based electronic and optoelectronic devices
remarkably.

2. Experimental

The 0.5 µm thick Al0.5Ga0.5N epitaxial film used in this
work was grown over AlN template on sapphire using metal
organic chemical vapor deposition (MOCVD, Taiyo Nippon
Sanso, SR4000 HT) as represented in figure 1(a). The 2Theta-
omega curve of the as-grown sample was measured using
x-ray diffraction (XRD, Bruker, D8 Discover) and is shown
in figure 1(b). The peaks corresponding to (0002) and (0004)
planes of AlGaN and AlN were obtained. The presence of
(0002) Al0.5Ga0.5N peak at 35.241◦ (shown in figure 1(c))
corresponds to ∼50% Al content in the film. The wafer was
diced into small samples of size 5 mm × 5 mm, which
were cleaned in de-ionized (DI) water, acetone, and isop-
ropyl alcohol (IPA) using the standard procedure [26]. For
the passivation, the surface of bare Al0.5Ga0.5N was activ-
ated by immersing in H2SO4:H2O2 (3:1) solution for 20 min
[29]. The samples obtained thereafter were referred to as the
hydroxylated samples. The hydroxylated samples were rinsed
with DI water and dipped into ZnTPP(OH) solution (pre-
pared by dissolving 1 mg ZnTPP(OH) compound in 5 ml
Toluene) for an optimized time of 2 h [26]. After this, the
samples were rinsed with IPA, dried using dry nitrogen, and
were placed in hot air oven at 120 ◦C for 10 min. The
samples prepared by the above process were named SAM pas-
sivated samples. Both bare and passivated films were char-
acterized by contact angle measurement (CA, Data Phys-
ics), x-ray photoelectron spectroscopy (XPS, PHI 5000 Versa
Probe II), atomic force microscopy (AFM, Asylum Research,
MFP 3D), Kelvin probe force microscopy (KPFM, Bruker
Dimension ICON) and photoluminescence spectroscopy (PL,
Horiba, LabRAM HR Evolution). To study the effect of pas-
sivation on the device performance, the interdigitated geo-
metry of MSM photodetectors (with 50 µm electrode width
and inter-electrode spacing) was fabricated on both bare and
SAM passivated Al0.5Ga0.5N films using mask-less optical
lithography (Intelligent Micropatterning SF-100 Xpress), and
Ni/Au (30 nm/40 nm) metals were deposited using thermal
evaporation (base pressure ∼10−6 Torr). Finally, lift-off was
performed in warm acetone to obtain Ni/Bare Al0.5Ga0.5N/Ni
and Ni/SAM Al0.5Ga0.5N/Ni MSM photodetectors. The pho-
todetectors were tested in dark and under illumination by
Keithley semiconductor characterization system (SCS-4200)
connected to the EverBeing DC probe station (EB-6). For
photodetection measurements, an assembly of Xenon lamp
(75 W), monochromator (Bentham TMC 300), optical fiber

2



Semicond. Sci. Technol. 36 (2021) 055001 S Kaushik et al

Figure 1. (a) The schematic representation of the sample showing 0.5 µm thick Al0.5Ga0.5N grown over AlN template on sapphire. (b) The
XRD 2Theta-omega curve of the as-grown sample. (c) The zoomed view of the 2Theta-omega curve showing peaks corresponding to (0002)
plane of Al0.5Ga0.5N and AlN. (d) The schematic representation of as-fabricated MSM photodetector on SAM passivated Al0.5Ga0.5N
epilayer. (e) The schematic showing the bonding of ZnTPP(OH) molecules with the –OH groups of hydroxylated Al0.5Ga0.5N to form SAM.

(PCU-1000), power meter and sensor (Thor Laboratories) was
used.

3. Results and discussion

3.1. Characterization of SAM

In order to confirm the presence of molecular layer onto the
Al0.5Ga0.5N surface, water CA measurement and XPS were
performed. As shown in figure 1(e), the end group (−CH3) of
the ZnTPP(OH) molecule is a hydrophobic group [28]. There-
fore, the first test to examine the presence of SAM was the
CA measurement. The CAs of bare, hydroxylated and SAM
passivated Al0.5Ga0.5N films are shown in figure 2(a). For
bare film, the observed value of CA was 78◦. The process of
hydroxylation led to the formation of hydroxyl groups (–OH)
on the surface of Al0.5Ga0.5N, thereby reducing CA to 42◦. A
high CA of 98◦ was observed for SAM passivated film, which
assured the presence of a hydrophobic layer on the Al0.5Ga0.5N
surface [28]. Moreover, CA of >90◦ indicated the presence
of −CH3 groups on the top surface which implied vertically
standing molecules on the Al0.5Ga0.5N surface (as shown in
figure 1(e)). In order to investigate the bonding between the
molecular layer and the Al0.5Ga0.5N surface, we opted for the
surface sensitive XPS characterization of the SAM passivated
film. Figures 2(b)–(f) show Zn 2p peaks and the deconvoluted
peaks for N 1s, Ga 2p3/2, Al 2p, and O 1s. The Zn 2p3/2 and

Zn 2p1/2 peaks (figure 2(b)) at 1021.24 eV and 1044.34 eV
[26, 30], respectively, indicate the presence of ZnTPP(OH)
monolayer on the Al0.5Ga0.5N surface. Along with Zn peaks,
the peaks corresponding to N in TPP at 396.71 eV (figure 2(c))
[30–32], and HO–C at 532.32 eV (figure 2(f)) [26, 31] also
highlight the presence of ZnTPP(OH) SAM. The peaks cor-
responding to Ga–OH at 1118.18 eV (figure 2(d)) [30], Al–
OH at 74.01 eV (figure 2(e)) [26, 33], HO–Ga at 530.66 eV
[30], and HO–Al at 529.93 eV (figure 2(f)) indicate the exist-
ence of –OH groups on Al0.5Ga0.5N surface. Finally, the peak
at 531.54 eV [34] in O 1s spectra (figure 2(f)) corresponds to
HO–OH bond between the –OH groups of the hydroxylated
Al0.5Ga0.5N surface and the ZnTPP(OH) molecule. These res-
ults confirm the chemical adsorption of SAM on Al0.5Ga0.5N
surface.

3.2. Effect of SAM on Al0.5Ga0.5N epilayers

After observing the presence of SAM, its effect on the rough-
ness of Al0.5Ga0.5N film was tested. AFM scans of both bare
and SAM passivated films were recorded (figures 3(a) and
(b)). The RMS value of roughness was found to reduce from
12.2 nm for bare film to 11.9 nm for the SAM passivated film,
which implied a good quality surface passivation.

Since surface charge is represented by surface poten-
tial [35, 36], the KPFM scans of both the films were
taken (figures 4(a) and (b)). The measured contact potential
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Figure 2. (a) The CAs for bare, hydroxylated, and SAM passivated Al0.5Ga0.5N films. XPS peaks of (b) Zn 2p, (c) N 1s, (d) Ga 2p3/2,
(e) Al 2p, and (f) O 1s for ZnTPP(OH) SAM passivated Al0.5Ga0.5N films.

Figure 3. AFM images of (a) bare, and (b) SAM passivated Al0.5Ga0.5N films.

difference by KPFM is related to the surface potential [36, 37].
Therefore, the measured potential values are directly related
to the charges present on the film surface. As shown in
figure 4(c), the mean value of surface potential for bare and
passivated Al0.5Ga0.5N films was found to be 560 and 282 mV,
respectively. Since nitrogen vacancies and/or oxygen and sil-
icon impurities lead to the unintentional n-type doping in
III–V nitrides [38, 39], the presence of surface states leads
to an upward band bending in AlGaN [18, 23]. The change

in surface potential upon passivation reflects the change in
band bending [37]. Therefore, a significant decrease in sur-
face potential by 278 mV indicates a decrease in upward band
bending, as shown in figures 4(d) and (e). This clearly high-
lights a decrease in surface charge and successful passivation
of the surface states by SAM of porphyrin molecules.

The above results were also supported by PL spectro-
scopy. Figure 5 shows the PL spectra of bare and passivated
Al0.5Ga0.5N films, zoomed for near band-edge emission
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Figure 4. KPFM images of (a) bare, and (b) SAM passivated Al0.5Ga0.5N films. (c) The plot showing the mean surface potential of bare and
passivated films. The energy band diagrams highlighting (d) band bending in bare film, and (e) decrease in band bending in SAM passivated
films.

Figure 5. A comparison of PL intensity of NBE peak of the bare
and SAM passivated Al0.5Ga0.5N films.

(NBE) peak. As is clear from the figure, a four-fold increase in
the PL intensity of NBE peak was observed for the SAM pas-
sivated film. An increase in the PL intensity reflects the higher
probability of radiative recombination [40], and decrease in
the surface recombination velocity [41]. Therefore, a signific-
ant enhancement in PL intensity of the NBE peak is attributed
to the successful passivation of surface states by SAM.

3.3. Effect of SAM on Al0.5Ga0.5N solar-blind photodetector

After examination of the effect of ZnTPP(OH) SAM on
Al0.5Ga0.5N epilayer, MSM photodetectors with 50 µm elec-
trode width and inter-electrode spacing were fabricated on
both bare and passivated samples and I–V and I–t meas-
urements were performed. The semi-log plots of dark and
photo currents versus voltage for Ni/Bare Al0.5Ga0.5N/Ni
and Ni/SAM Al0.5Ga0.5N/Ni photodetectors are shown in
figures 6(a) and (b), respectively. A comparison of the dark
current of the two devices is shown in figure 6(c), which shows
that the dark current of Ni/SAMAl0.5Ga0.5N/Ni photodetector
was found to decrease by nearly two orders of magnitude
(especially at high voltages), without degrading the magnitude
of the photocurrent at 270 nm. For example, at−10 V, the dark
current for photodetector fabricated on bare filmwasmeasured
to be 4.8× 10−8 A, while it was 5.4× 10−10 A for the passiv-
ated film based photodetector. The effect of reduction of the
dark current was manifested in the PDCR of the photodetector,
which is given by [42–44]:

PDCR=
(Iph − Id)

Id
(1)

where Iph is the photo current at 270 nm and Id is the dark
current. As shown in figure 6(d), a significant enhancement in
PDCR was observed for devices fabricated on the passivated
films. The peak PDCR increased by ∼36 times (from 322 to
11 561).
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Figure 6. Dark and photo currents of (a) Ni/Bare Al0.5Ga0.5N/Ni, and (b) Ni/SAM Al0.5Ga0.5N/Ni photodetector. The inset in (a) shows the
optical microscope image of as-fabricated MSM photodetector with interdigitated electrodes of width and spacing 50 µm each. A
comparison of the (c) dark current, and (d) PDCR versus voltage of the two photodetectors. The inset in (d) shows zoomed PDCR of
Ni/Bare Al0.5Ga0.5N/Ni photodetector.

Figure 7. shows the energy band diagram of MSM photo-
detectors fabricated on bare and SAM passivated Al0.5Ga0.5N
epitaxial films. Due to the presence of a large density of surface
states in bare Al0.5Ga0.5N film, the current transport mech-
anisms get modified. One of the prominent mechanisms is
the TAT, which is shown in figure 7(a) [18–21]. As a result,
a large dark current is observed for Ni/Bare Al0.5Ga0.5N/Ni
photodetector. For Ni/SAM Al0.5Ga0.5N/Ni, a decrease in the
dark current is attributed to the passivation of surface states of
Al0.5Ga0.5N by SAM. Due to passivation, the available tunnel-
ing pathways are no longer available to the carriers, leading to
the less contribution of TAT to the dark current (as shown in
figure 7(b)). Therefore, a significant decrease in dark current
and enhancement in PDCRwas observed for the photodetector
fabricated on passivated Al0.5Ga0.5N films.

Besides improving the PDCR, SAM also led to an improve-
ment in the responsivity of the photodetector, which is
expressed as [26, 43, 44]:

Rλ =
(Iph − Id)

Pλ
(2)

where Pλ is the power of incident light of wavelength λ.
Figure 8(a) shows the plot of responsivity of the two photo-
detectors versus wavelength. It is worth noting that the as-
fabricated photodetectors were completely irresponsive up to
300 nm, and started giving a response only after 280 nm,
thereby exhibiting the complete ‘solar-blindness’. The max-
imum responsivity was observed at deep UV wavelength of
270 nm. The comparison shows that the responsivity increased
from ∼0.9 mA W−1 to ∼1.6 mA W−1 at 7 V at the incid-
ent wavelength of 270 nm. On reducing the wavelength fur-
ther, most of the light gets absorbed near the upper sur-
face of the material instead of getting absorbed uniformly
throughout the active region [45]. As a result, the respons-
ivity of both the devices was found to decrease in the
shortwave region. Moreover, the responsivity was found to
increase with increase in the applied voltage, as shown in
the inset of figure 8(a). A maximum value of 2.2 mA W−1

at 10 V was calculated for Ni/SAM Al0.5Ga0.5N/Ni pho-
todetector by using the incident power density of only
2.62 µW mm−2.
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Figure 7. Energy band diagram of MSM photodetector fabricated on (a) bare, and (b) SAM passivated Al0.5Ga0.5N epilayer.

Figure 8. (a) The plot of responsivity versus incident wavelength of Ni/Bare Al0.5Ga0.5N/Ni and Ni/SAM Al0.5Ga0.5N/Ni photodetector.
The inset shows the variation of peak responsivity with voltage for Ni/SAM Al0.5Ga0.5N/Ni photodetector. (b) The plot of specific
detectivity versus incident wavelength for the two photodetectors. The temporal response of (c) Ni/Bare Al0.5Ga0.5N/Ni, and (d) Ni/SAM
Al0.5Ga0.5N/Ni photodetector.
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The sensitivity of a photodetector is measured in terms of
the specific detectivity which is given by [46]

D∗ = Rλ

√
A

2eId
(3)

where A is the area of device (∼15 mm2). Equation (3) implies
that specific detectivity is related to the responsivity and dark
current of the photodetector. The successful passivation of
the surface states resulted in reduction in the dark current
and enhancement in the responsivity. As a result, a signi-
ficant improvement in the specific detectivity was observed
for Ni/SAM Al0.5Ga0.5N/Ni photodetector. At 7 V, the spe-
cific detectivity was found to increase from 1.6 × 1010 to
1.2 × 1011 Jones for the photodetector fabricated on passiv-
ated Al0.5Ga0.5N epilayer (figure 8(b)).

The successful passivation also resulted in improving the
speed of the photodetector. The response of the Ni/Bare
Al0.5Ga0.5N/Ni photodetector to the switching input signal
(on/off) is shown in figure 8(c). On switching the light on
(or off), a sudden change in carrier concentration results in
sharp rise (or fall) of the current. Along with these fast com-
ponents, slow rising (or falling) edges can also be seen. These
reflect the degrading effect of surface states on the speed of the
photodetector. The surface states act as traps for the carriers
and slow down the response speed of the device [27, 47]. For
Ni/Bare Al0.5Ga0.5N/Ni photodetector, an approximate rise
and fall time of 4 s was observed. On comparing the response
to Ni/SAM Al0.5Ga0.5N/Ni photodetector, a clear reduction
in the response time to ∼0.5 s was noted (figure 8(d)). This
improvement in the speed of the photodetector is attributed to
the effective passivation of surface states of Al0.5Ga0.5N by
SAM, which suppressed the slow components of rise (or fall)
time.

The results show that the SAM led to a significant improve-
ment in the performance of the Al0.5Ga0.5N-based solar-blind
MSM photodetector. The enhancement in PDCR, responsiv-
ity and specific detectivity is attributed to a reduction in the
dark current by successful passivation of the surface states of
Al0.5Ga0.5N by SAM. Moreover, ZnTPP(OH) is stable up to
460 ◦C [28]; therefore, the fabricated photodetector is expec-
ted to exhibit high temperature robustness. However, the radi-
ation and chemical hardness of the photodetector will be lim-
ited by the SAM and needs to be explored further.

4. Conclusions

In conclusion, the surface states of Al0.5Ga0.5N were success-
fully passivated by SAM of ZnTPP(OH) molecules, which led
to a drastic improvement in the performance of the fabricated
solar-blind photodetector. The molecular layer was charac-
terized by CA, XPS and AFM. A clear reduction in the sur-
face potential by ∼280 mV and a four-fold increase in the PL
intensity confirmed the passivation of surface states. As a res-
ult, a significant reduction in the dark current by two orders of
magnitude, enhancement in peak PDCRby∼36 times and spe-
cific detectivity by ∼10 times, improvement in peak respons-
ivity from 1.6 to 2.2 mA W−1, and in temporal response from

4 s to 0.5 s was observed for the SAM passivated Al0.5Ga0.5N
based solar-blind photodetector.
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