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Abstract
The optical properties of BAlN, BGaN andAlGaN ternary alloys are investigated using hybrid density
functional for the design of lattice-matched optical structures in the ultraviolet spectrum. The
calculated AlGaNproperties agreewell with previous reports, validating themodel. A peculiar non-
monotonic behavior of the refractive index as a function of the boron composition is found. The
results of this calculation are interpolated to generate a three-dimensional dataset, which can be
employed for designing a countless number of lattice-matched and –mismatched heterostructures.
These heterostructures could span a range of operatingwavelengths well into the deep ultraviolet with
refractive indices ranging from1.98 to 2.41 for AlN at 0 eV andGaNnear theGaNbandgap,
respectively. An example is shownwhere a lattice-matched heterostructure, AlN/B0.108Ga0.892N, is
applied forDBR applications with a large index difference. ADBR comprising theAlN/B0.108Ga0.892N
heterostructure at theUVwavelength of 375 nm is found to exceed 93%peak reflectivity with only 10
pairs and reaches 100% reflectivity with 35 pairs. For a chosen designwith 25 pairs, theDBRhas a peak
reflectivity of 99.8% and a bandwidth of 26 nm fulfilling the requirements ofmost devices especially
ultraviolet vertical-cavity surface emitting lasers.

1. Introduction

Wurtzite III-nitride semiconductormaterials havemany technically important properties for applications in
optical and electronic devices [1]. The III-nitride based optical devices can operate over awide spectrumof
wavelengths from infrared (IR) to ultraviolet (UV) [2] due to highly tunable bandgaps from∼0.7 to∼6 eV [3].
The interests in developingUVdevices such asUV light-emitting diodes (LEDs), photodetectors, and lasers are
rapidly rising for vital applications such as sterilization, data storage, biochemical sensing, atomic clocks, and
communication [4–14].

Optical structures such as distributed Bragg reflectors (DBRs) are essential inUV surface-emitting lasers for
cavity formation andUVLEDs for higher light extraction efficiency [15–17]. DBRs are dielectric or
semiconducting superlattices capable of achieving up to 100% reflectivity. However, the formation of cracks and
compromised crystal quality due to strain and latticemismatch can greatly harm aDBR’s performance [18].
Thus, both latticematching and large refractive index contrast are desirable especially for epitaxial DBRs. In the
past, AlGaN-based heterojunctions, includingAlxGa1-xN/AlyGa1-yN superlattices, have been used for various
UV applications where the higher index contrast leads to higher latticemismatch [19–21]. In theory, InAlN
would be suitable for latticematching withAlGaN alloys, though it could be challenging to growhigh quality
InAlNwith large indium composition due to large atomic size difference, phase separation, and epitaxial
temperature incompatibility between InN (∼600 °C) andAlN (�1100 °C) [22, 23]. This leads to relatively
complex growthmethods for the realization of near lattice-matched AlGaN/InAlNDBR [24].
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Recently, the search formaterials suitable formoreUV and power devices in thewurtzite III-nitride system
has inspired a number of studies of boron-containing III-nitrides including BAlN andBGaN[18, 25–35].
Alloying III-nitrides with boron can reduce their lattice parameters giving a newoption for strain engineering
and latticematching [36]. In addition, the incorporation of boron could lead tomore alloys with larger bandgaps
than that of GaN, addingmore options for device engineering.

The refractive index is critical for the design and simulation of optoelectronic devices in theUV range. It has
been experimentally shown that a small incorporation of boron intoGaN andAlN can cause a significant change
in the refractive index ofmaterials [25, 26]. Recently, the full range of compositions of BGaN alloys has been
investigated by Said et al using the local density approximation of density functional theory [28]. Additionally,
Yamashita et alhave studiedwurtzite BxAl1−xNwith low boron compositions (x� 0.5) also using the local
density approximation [37]. However, it is well known that such local functionals could severely underestimate
the bandgaps, redshift absorption spectra,miss excitonic features in dielectric function, and have a tendency to
overestimate the static dielectric function as Paier et al have shown [38]. This this an issue because the refractive
index is an electronic-band-structure dependent property andmostmodels assume an inverse correlation of the
indexwith bandgap (see supporting information). In comparison, the use of hybrid functionals givesmuch
more reliable results. This led both Said et al andYamashita et al to employ a rigid shift of the conduction band to
compensate for the limitations of the local density approximation.

In this work, we performed computations of the lattice parameters and the refractive indices of the BxAl1−xN
andBxGa1−xN alloys (0� x� 1). The index calculation of theAlxGa1−xN alloys (0� x� 1)was carried out to
comparewith the reports of the extensively studied AlxGa1−xN alloys for validating the calculationmethodology
[39, 40]. Hybrid density functional theorywas employed for an accurate calculation of the optical properties.
Furthermore, the refractive indices of the three ternary alloys and the lattice constants were employed to identify
lattice-matchedmaterial pairs with a large index difference forDBR applications.

2. Computational details

The calculationswere carried out using theViennaAb initio Simulation Package [41, 42]. Before calculating the
indices, thewurtzite structures of the alloyswere optimized using the general gradient approximation (GGA-
PBEsol) of the exchange-correlation potential [43]. The energy cutoff was set to 520 eV for the plane-wave basis
set. The structure optimizationwas performed on primitive cells for the binarymaterials, i.e. BN, AlN, andGaN;
and on 16-atom supercells for the ternary AxC1−xN alloys (A=B, Al; C=Al, Ga; 0� x� 1)with
chalchopyrite-like (CH) and luzonite-like (LZ) structures for x=0.5, and 0.25 and 0.75, respectively [29]. In
addition, the calculationwas performed for BxAl1−xN andBxGa1−xN alloys with x=0.125, representing the
alloys with lower boron compositions, closer to experimental works [18, 30, 31, 35, 36]. For these two alloys, we
utilized the same LZ structure as x=0.25, but with the replacement of one boron atomwith an aluminumor a
gallium atom. All structures were relaxed until Hellman–Feynman forces reached less than 0.02 eVÅ−1. TheΓ-
centered k-meshwas set to 6×6×6 for the structural optimizations. Figure 1 shows the calculated lattice
parameters of the AlxGa1−xN, BxAl1−xN andBxGa1−xN alloys (0� x� 1), where the results of binaries and
ternaries show good agreementwith reported experimental and theoretical discoveries [29, 44].

To calculate the optical properties, the hybrid functional ofHeyd, Scuseria, and Ernzerhof (HSE) [45]was
employed using the optimized lattice structures assuming the light polarization is perpendicular to the c-axis.
Similar to the structure optimization, 520 eVwas utilized as the energy cutoff for the plane-wave basis set.Γ-
centered k-meshes of 8×8×8 and 6×6×6were adopted for the binaries and ternaries, respectively. The
number of bandswas converged for optical properties, and 96 bandswere used for all cells. The same parameters
were used for the AlGaN, BAlN, andBGaN alloys.

3. Results and discussion

The refractive and absorption indices of AlGaN alloys, shown infigures 2(a) and (b), have amonotonic trend
where both the index and its slope increase as theGa content is increased (Al is decreased). Figures 2(c) and (d)
compare our results with experimental resultsmeasured at room temperature, showing similar trends and
degrees of dispersion (slope of refractive index versus energy) [39, 40]. Ourmodel underestimates the refractive
index by a small percentage between 0 and 6.5%depending on composition, which is a smaller error than found
by othermethods [46, 47]. Additionally, this errormay be related to the temperature dependence of the
refractive indexwhich is not accounted for in ourmodel as density functional theory does not account for
temperature by default [48, 49].

The calculated values for boron alloys are reported infigure 3. Both absorption and refractive indices are
calculated using the complex dielectric function (supporting information) as described in the following
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Figure 1.Calculated lattice parameters a and c of different wurtzite AxC1−xN alloys (A=B, Al; C=Al, Ga; 0� x� 1) compared to
those of the binarywurtzitematerials from [44] (marked by the dashed red lines).

Figure 2.The calculated (a) refractive indices and (b) absorption indices of the AlxGa1-xN alloys. (c) and (d)Comparison of the
refractive index of AlxGa1−xNobtained in this study and reported byMuth et al [40] andTakeuchi et al [39] through experimental
works: (c) Static refractive index at 0 eV and (d) refractive index at 3.1 eV right below theGaNbandgap.

Figure 3.Refractive and absorption indices of the BxAl1−xN (a) and (b) andBxGa1−xN (c) and (d) alloys as a function of photon
energy. The dashed lines in (d) show the curves for different absorption percentages when light goes through a 1μmfilm (supporting
information). Themagenta stars in (c) show the refractive indices of BN asmeasured by Segura et al for comparison [51].
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n is the refractive index,κ is the absorption index, and ε1 and ε2 are the real and imaginary parts of the dielectric
function, respectively.

Figure 3 shows the refractive and absorption indices of the BAlN andBGaN alloys. The refractive indices
exhibit positive slopes; and the absorption indices stay close to zero then rise when approaching the respective
optical bandgaps [34, 52]. This is similar to other wurtzite nitrides such as AlGaN and InGaN.However, another
trend is observedwhen considering compositions where the refractive indices below the bandgaps of BAlN and
BGaNdonot always decrease with reduced lattice parameters. See supporting information for an in depth
discussion.

It is important to compare our results with the few experimental works investigating the optical properties of
wurtzite BN and its alloys. Recently, Segura et almeasured the refractive index of wurtzite BN at theUV-visible
range [51]. Themagenta stars infigure 3(c) show the comparison between Segura’s and our index values. It is
remarkable to see that the difference between the two is less than∼5%, and that the slope in our result is similar
to the experimental value for BN at the energy range 1–5 eV [51].

Other earlier experimental works exploring the refractive indices of low boron composition BAlN and
BGaN show trends that are different from each other and fromour results [25, 26, 53, 54]. See supporting
information for a detailed comparison.We believe that the apparent disagreement for both BGaN andBAlN
between some experimental results with our calculations is likely the result of factors other than boron
composition causing a larger decrease in index in their results. Low (wurtzite) crystallinity and high levels of
impurity such as carbonmay both be at play amongst other unknown issues [55, 56]. Additionally, the
characterization technique used to estimate the boron compositionwas not reported byWatanabe; and neither
Gautier norWatanabe reported on possible impurities and their levels; thus the resultsmay not be directly
comparable to each other nor to ours [26, 54].

To design III-nitride optical structures includingDBRs forUV applications, it is imperative to consider
multiple factors simultaneously, including the target wavelength range, the lattice parameters, and the refractive
index. The lattice parameters as a function of the composition (figure 1) and the refractive indices as a function
of wavelength (figures 2 and 3) of the AlxGa1−xN, BxAl1−xN, and BxGa1−xN alloys (0� x� 1)were correlated
and two-dimensional (2D)-interpolated using theModifiedAkima cubicHermitemethod [57]. This
interpolationmethodwas chosen due to its lower variations in the predicted variable thanwhen using the spline
interpolationmethod [58]. Additionally, it has less sharp edges when compared to linear interpolation. This, we
believe, would give amore sensible prediction of refractive index curveswith a high compositional resolution.
Subsequently, theywere plotted in a three-dimensional (3D) chart shown infigure 4 for the design of optically-
transparentUVDBRpairs.

Based on the 3D chart infigure 4, one can identify a virtually infinite number of lattice-matchedmaterial
pairs with various refractive index differences important forminimized structural thickness and for strain
management. Additionally, one can name numerousmaterial pairs with certain latticemismatch levels for
device strain engineeringwhile accommodating the need formaintaining certain index differences for different
applications [59, 60].

For instance, the index differenceΔn between two lattice-matched and optically-transparent alloys as a
function of the lattice parameter and thewavelength can be extracted fromfigure 4, as shown infigure 5(a).
Fromfigure 5(a), the overall largest index difference is formed betweenAlN andB0.108Ga0.892Nwith the same
lattice constant of 3.113Å, ranging from0.14 to 0.27 at 370 (UVA)−1500 (IRB)nm. In general, the index
difference narrowswhen the lattice parameter shifts away from that of AlN towards those ofGaN andBN.

Subsequently, the knowledge of the refractive index of lattice-matchedmaterial pairs can be utilized to
compute the theoretical bandwidthΔλ of thematerial pair at variouswavelengths for theDBR according to
equation (2)whereλ0 is the designwavelength, ρ is reflection coefficient, nH and nL are high and low refractive
indices, respectively [61]. The results are shown infigure 5(b). The overall largest bandwidth values are 26−65
nmat thewavelength range 370−1500 nmwhich is found for the sameAlN/B0.108Ga0.892N pair due to it having
the largest index difference. Note that the bandwidth gradually reduces as thewavelength is reduced, which is the
reason behind the difficulty of designing a large bandwidthDBR for theUV range.
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Finally, the AlN/B0.108Ga0.892N pair was employed to simulate the performances of a fewDBRs at aUVA
wavelength of 375 nm.Accordingly, the thickness of the AlN andB0.108Ga0.892N layers are 45.5 and 40.2 nm,
respectively, based on their refractive indices of 2.06 and 2.33 at 375 nm. This wavelength is chosen partially due
to recent interests in developing theUVA vertical-cavity surface-emitting lasers (VCSELs)near 375 nm for
important applications including the atomic clock [14, 62–65]. The simulationwas conducted by Lumerical

Figure 4.The 3D chart of the refractive indices of the AlxGa1-xN, BxAl1-xN, and BxGa1-xN alloys (0�x�1) as a function of the photon
wavelength (175–1500 nm) and the lattice parameter (2.5–3.2 Å) for the design of lattice-matchedUVDBRpairs. The horizontal black
curves represent the refractive indices of particular alloy compositions that we directly calculated using density functional theory. The
three surfaces connecting the horizontal black (and red) curves are interpolated to show the expected indices of other compositions of
the three alloys. The vertical blue curves represent borders of 100 nm thick slices based on thewavelength axis. Any two alloys with the
same color have the same lattice parameter. The 3D chart is cut off when the BxGa1-xN absorption is near 90% for a 1μmthickfilm
since BxGa1-xN is always the lower bandgapmaterial for any latticematached pair comprising BGaN/AlGaNor BGaN/BAlN
heterostrucutres (see figure 1 and dashed lines in figure 3). Therefore, the 3D chart applies for optically-transparent (or
semitransparent) scenarios only.

Figure 5. (a)The refractive index differenceΔn and (b) the theoretical DBRbandwidthΔλ of lattice-matchedmaterial pairs as a
function of the lattice parameter and thewavelength extracted fromfigure 4. The horizontal red lines indicate the lattice parameters of
binary BN, AlN, andGaN as reference.

5

Mater. Res. Express 8 (2021) 086202 FAlQatari et al



FDTDSolutions [66]. The assumption of no optical absorptionwasmade since 375 nm is below the bandgaps of
AlN andB0.108Ga0.892N (figure 3(d)) [52].

We started this simulation by sweeping different numbers of pairs to see the change in the peak reflectivity.
Figure 6(a) indicates that the peak reflectivity reaches over 93%with only 10 pairs, exceeds 99% at 20 pairs, and
plateaus after 25 pairs. The reflectivity spectrumof the 25-pair DBR is shown infigure 6(b), where the peak
reflectivity is 99.8%. The bandwidthmeasured at 90% reflectivity is 26 nmas indicated by the arrow in
figure 6(b).

Table 1 shows the comparison of the 10-pair and the 25-pair AlN/B0.108Ga0.892NDBRswith a few reported
DBRs designed forUVA applications, indicating superior properties of our proposedDBRwhich include no
latticemismatch, smaller number of pairs, higher reflectivity, and larger bandwidth. It is important to note that
the results of this study can be extended to numerous othermaterial pairs for lattice-matching or lattice-
engineering needs at variouswavelengths. Even thoughwe focus onUVapplications here, the results are
applicable to longer wavelength such as visible and infrared, though lattice contributions to the dielectric
behavior of thesematerialsmay need further study for amore accurate representation at wavelengths longer
than the near infrared range.

4. Conclusion

Wehave investigated the refractive index of AlGaN, BAlN andBGaN alloys using hybrid density functional
theory. Themain goal is to design lattice-matched optical structures in the ultraviolet range. TheAlGaN results
were shown to reasonablymatch experimental reports. A peculiar behavior of the refractive indices of different
boron alloys is found unlike other known nitrides. This unique behaviormay be attributed to the electronic
properties of the boron atomand the low slope of the refractive index of wurtzite BN.Our data is interpolated to
fit different compositional needs, and could be used in designing amyriad of lattice-matched and lattice-
mismatched heterostructures for photonic and optoelectronic devices. Structuresmade of thesematerials could
benefit from the large range of refractive indices and refractive index differences for all wavelengths down to the
deepUV range. A lattice-matched structure with a high difference in refractive index of B0.108Ga0.892N/AlN is

Figure 6. (a)DBRpeak reflectivity as a function of the number of the lattice-matchedAlN/B0.108Ga0.892Npairs at 375 nm and (b)
reflectivity as a function of wavelength for the 25-pair AlN/B0.108Ga0.892NDBR. The inset of (a) shows a 3-pairDBR as an example.

Table 1.Performance comparison of differentDBR structures forUVA applications. The bandwidth is taken at 90%of the peak reflectivity.

Result type Structure Latticemismatch λ0 (nm) Pairs Reflectivity Δλ (nm) Δn

Thiswork B0.108Ga0.892N/AlN 0% 375 10 0.933 26 0.27

25 0.998

Experiment [24] Al0.83In0.17N/Al0.2Ga0.8N 0.511% 368 45 0.993 13 N/A

Experiment [19] Al0.12Ga0.88N/GaN 0.265% 368 40 0.916 4.4 0.12

Simulation [19] 369 40 0.972 5.6

Experiment [20] Al0.18Ga0.82N/Al0.8Ga0.2N 1.37% 347 20 0.93 18 0.22

347 25 0.99 22

Experiment [21] Al0.2Ga0.8N/GaN 0.436% 380 60 0.99 8 0.17
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chosen as an example. It is used to demonstrate an optimizedDBR at 375 nmhaving a peak reflectivity of 99.8%
and a bandwidth of 26 nmwith only 25 pairs. The number of pairs could be increased or decreased to tune the
DBR’s reflectivity. These results are useful for latticematching and lattice engineering ofUV compatible
materials opening the door for different applications, including vertical emitters such asVCSELs.
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