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The optical properties of BAIN, BGaN and AlGaN ternary alloys are investigated using hybrid density
functional for the design of lattice-matched optical structures in the ultraviolet spectrum. The
calculated AlGaN properties agree well with previous reports, validating the model. A peculiar non-
monotonic behavior of the refractive index as a function of the boron composition is found. The
results of this calculation are interpolated to generate a three-dimensional dataset, which can be
employed for designing a countless number of lattice-matched and —mismatched heterostructures.
These heterostructures could span a range of operating wavelengths well into the deep ultraviolet with
refractive indices ranging from 1.98 to 2.41 for AIN at 0 eV and GaN near the GaN bandgap,
respectively. An example is shown where a lattice-matched heterostructure, AIN/By 10sGag 892N, is
applied for DBR applications with a large index difference. A DBR comprising the AIN/B ;0sGag.g9oN
heterostructure at the UV wavelength of 375 nm is found to exceed 93% peak reflectivity with only 10
pairs and reaches 100% reflectivity with 35 pairs. For a chosen design with 25 pairs, the DBR has a peak
reflectivity of 99.8% and a bandwidth of 26 nm fulfilling the requirements of most devices especially
ultraviolet vertical-cavity surface emitting lasers.

1. Introduction

Waurtzite III-nitride semiconductor materials have many technically important properties for applications in
optical and electronic devices [1]. The III-nitride based optical devices can operate over a wide spectrum of
wavelengths from infrared (IR) to ultraviolet (UV) [2] due to highly tunable bandgaps from ~0.7 to ~6 eV [3].
The interests in developing UV devices such as UV light-emitting diodes (LEDs), photodetectors, and lasers are
rapidly rising for vital applications such as sterilization, data storage, biochemical sensing, atomic clocks, and
communication [4—14].

Optical structures such as distributed Bragg reflectors (DBRs) are essential in UV surface-emitting lasers for
cavity formation and UV LEDs for higher light extraction efficiency [15-17]. DBRs are dielectric or
semiconducting superlattices capable of achieving up to 100% reflectivity. However, the formation of cracks and
compromised crystal quality due to strain and lattice mismatch can greatly harm a DBR’s performance [18].
Thus, both lattice matching and large refractive index contrast are desirable especially for epitaxial DBRs. In the
past, AlGaN-based heterojunctions, including Al,Ga,_.N/Al,Ga,_,N superlattices, have been used for various
UV applications where the higher index contrast leads to higher lattice mismatch [19-21]. In theory, InAIN
would be suitable for lattice matching with AlGaN alloys, though it could be challenging to grow high quality
InAIN with large indium composition due to large atomic size difference, phase separation, and epitaxial
temperature incompatibility between InN (~600 °C) and AIN (>1100 °C) [22, 23]. This leads to relatively
complex growth methods for the realization of near lattice-matched AlGaN/InAIN DBR [24].
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Recently, the search for materials suitable for more UV and power devices in the wurtzite III-nitride system
has inspired a number of studies of boron-containing III-nitrides including BAIN and BGaN[18, 25-35].
Alloying I1I-nitrides with boron can reduce their lattice parameters giving a new option for strain engineering
and lattice matching [36]. In addition, the incorporation of boron could lead to more alloys with larger bandgaps
than that of GaN, adding more options for device engineering.

The refractive index is critical for the design and simulation of optoelectronic devices in the UV range. It has
been experimentally shown that a small incorporation of boron into GaN and AIN can cause a significant change
in the refractive index of materials [25, 26]. Recently, the full range of compositions of BGaN alloys has been
investigated by Said et al using the local density approximation of density functional theory [28]. Additionally,
Yamashita et al have studied wurtzite ByAl; N with low boron compositions (x < 0.5) also using the local
density approximation [37]. However, it is well known that such local functionals could severely underestimate
the bandgaps, redshift absorption spectra, miss excitonic features in dielectric function, and have a tendency to
overestimate the static dielectric function as Paier et al have shown [38]. This this an issue because the refractive
index is an electronic-band-structure dependent property and most models assume an inverse correlation of the
index with bandgap (see supporting information). In comparison, the use of hybrid functionals gives much
more reliable results. This led both Said et al and Yamashita et al to employ a rigid shift of the conduction band to
compensate for the limitations of the local density approximation.

In this work, we performed computations of the lattice parameters and the refractive indices of the B,Al; N
and B,Ga, ,Nalloys (0 < x < 1). The index calculation of the Al,Ga, N alloys (0 < x < 1) was carried out to
compare with the reports of the extensively studied Al,Ga; N alloys for validating the calculation methodology
[39, 40]. Hybrid density functional theory was employed for an accurate calculation of the optical properties.
Furthermore, the refractive indices of the three ternary alloys and the lattice constants were employed to identify
lattice-matched material pairs with a large index difference for DBR applications.

2. Computational details

The calculations were carried out using the Vienna Ab initio Simulation Package [41, 42]. Before calculating the
indices, the wurtzite structures of the alloys were optimized using the general gradient approximation (GGA-
PBEsol) of the exchange-correlation potential [43]. The energy cutoff was set to 520 eV for the plane-wave basis
set. The structure optimization was performed on primitive cells for the binary materials, i.e. BN, AIN, and GaN;
and on 16-atom supercells for the ternary A,C; N alloys (A = B, Al;C = Al, Ga; 0 <x < 1) with
chalchopyrite-like (CH) and luzonite-like (LZ) structures for x = 0.5, and 0.25 and 0.75, respectively [29]. In
addition, the calculation was performed for ByAl; N and B,Ga; ,N alloys withx = 0.125, representing the
alloys with lower boron compositions, closer to experimental works [18, 30, 31, 35, 36]. For these two alloys, we
utilized the same LZ structure asx = 0.25, but with the replacement of one boron atom with an aluminum or a
gallium atom. All structures were relaxed until Hellman—Feynman forces reached less than 0.02 eVA™'. The I'-
centered k-mesh was setto 6 x 6 x 6 for the structural optimizations. Figure 1 shows the calculated lattice
parameters of the Al,Ga; N, B,Al; N andB,Ga; N alloys (0 < x < 1), where the results of binaries and
ternaries show good agreement with reported experimental and theoretical discoveries [29, 44].

To calculate the optical properties, the hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE) [45] was
employed using the optimized lattice structures assuming the light polarization is perpendicular to the c-axis.
Similar to the structure optimization, 520 eV was utilized as the energy cutoff for the plane-wave basis set. I'-
centered k-meshesof8 x 8 x 8and6 x 6 x 6wereadopted for the binaries and ternaries, respectively. The
number of bands was converged for optical properties, and 96 bands were used for all cells. The same parameters
were used for the AlGaN, BAIN, and BGaN alloys.

3. Results and discussion

The refractive and absorption indices of AlGaN alloys, shown in figures 2(a) and (b), have a monotonic trend
where both the index and its slope increase as the Ga content is increased (Al is decreased). Figures 2(c) and (d)
compare our results with experimental results measured at room temperature, showing similar trends and
degrees of dispersion (slope of refractive index versus energy) [39, 40]. Our model underestimates the refractive
index by a small percentage between 0 and 6.5% depending on composition, which is a smaller error than found
by other methods [46, 47]. Additionally, this error may be related to the temperature dependence of the
refractive index which is not accounted for in our model as density functional theory does not account for
temperature by default [48, 49].

The calculated values for boron alloys are reported in figure 3. Both absorption and refractive indices are
calculated using the complex dielectric function (supporting information) as described in the following
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Figure 1. Calculated lattice parameters a and ¢ of different wurtzite A,C; (N alloys (A = B, Al; C = Al, Ga; 0 <x < 1) compared to
those of the binary wurtzite materials from [44] (marked by the dashed red lines).
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Figure 2. The calculated (a) refractive indices and (b) absorption indices of the Al,Ga,_,N alloys. (c) and (d) Comparison of the
refractive index of Al,Ga, _,N obtained in this study and reported by Muth et al [40] and Takeuchi et al [39] through experimental
works: (c) Static refractive index at 0 eV and (d) refractive index at 3.1 eV right below the GaN bandgap.

B,AlLN <N
29 T T 20 T
28 28
07 F E
2.7 27 3
0.6
526 % 526 E
o Bos o
c 0 2 3
=25 = =25
[} = [
= L4 2 3
C 24 = D24
o S e E
& =
223 § 03 223 E
22 0.2 22 3| Absorption'%
_by1 um film:
2.4 04 21 { 99%
# Wourtzite BN by
2.0 0.0 20p  Seguaetal. 4 00 ) A - - _ZC
01 2 3 4586 7 8 01 2 3 45 86 7 8 01 2 3 4 5 6 7 8 01 2 3 45 6 7 8
(a) Energy (eV) (b) Energy (eV) (c) Energy (eV) (d) Energy (eV)

Figure 3. Refractive and absorption indices of the ByAl; (N (a) and (b) and B,Ga; _,N (c) and (d) alloys as a function of photon
energy. The dashed lines in (d) show the curves for different absorption percentages when light goes through a 1 m film (supporting
information). The magenta stars in (c) show the refractive indices of BN as measured by Segura et al for comparison [51].
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definition [50]:

1
n—— \/812+ 522 + &,
J2
and

1
K:f V€12+€22 — & (1)

nis the refractive index, & is the absorption index, and ¢, and €, are the real and imaginary parts of the dielectric
function, respectively.

Figure 3 shows the refractive and absorption indices of the BAIN and BGaN alloys. The refractive indices
exhibit positive slopes; and the absorption indices stay close to zero then rise when approaching the respective
optical bandgaps [34, 52]. This is similar to other wurtzite nitrides such as AlGaN and InGaN. However, another
trend is observed when considering compositions where the refractive indices below the bandgaps of BAIN and
BGaN do not always decrease with reduced lattice parameters. See supporting information for an in depth
discussion.

Itis important to compare our results with the few experimental works investigating the optical properties of
wurtzite BN and its alloys. Recently, Segura et al measured the refractive index of wurtzite BN at the UV -visible
range [51]. The magenta stars in figure 3(c) show the comparison between Segura’s and our index values. It is
remarkable to see that the difference between the two is less than ~5%, and that the slope in our result is similar
to the experimental value for BN at the energy range 1-5eV [51].

Other earlier experimental works exploring the refractive indices of low boron composition BAIN and
BGaN show trends that are different from each other and from our results [25, 26, 53, 54]. See supporting
information for a detailed comparison. We believe that the apparent disagreement for both BGaN and BAIN
between some experimental results with our calculations is likely the result of factors other than boron
composition causing a larger decrease in index in their results. Low (wurtzite) crystallinity and high levels of
impurity such as carbon may both be at play amongst other unknown issues [55, 56]. Additionally, the
characterization technique used to estimate the boron composition was not reported by Watanabe; and neither
Gautier nor Watanabe reported on possible impurities and their levels; thus the results may not be directly
comparable to each other nor to ours [26, 54].

To design III-nitride optical structures including DBRs for UV applications, it is imperative to consider
multiple factors simultaneously, including the target wavelength range, the lattice parameters, and the refractive
index. The lattice parameters as a function of the composition (figure 1) and the refractive indices as a function
of wavelength (figures 2 and 3) of the Al,Ga, N, B,Al; ,N,and B,Ga; ,N alloys (0 < x < 1) were correlated
and two-dimensional (2D)-interpolated using the Modified Akima cubic Hermite method [57]. This
interpolation method was chosen due to its lower variations in the predicted variable than when using the spline
interpolation method [58]. Additionally, it has less sharp edges when compared to linear interpolation. This, we
believe, would give a more sensible prediction of refractive index curves with a high compositional resolution.
Subsequently, they were plotted in a three-dimensional (3D) chart shown in figure 4 for the design of optically-
transparent UV DBR pairs.

Based on the 3D chart in figure 4, one can identify a virtually infinite number of lattice-matched material
pairs with various refractive index differences important for minimized structural thickness and for strain
management. Additionally, one can name numerous material pairs with certain lattice mismatch levels for
device strain engineering while accommodating the need for maintaining certain index differences for different
applications [59, 60].

For instance, the index difference An between two lattice-matched and optically-transparent alloys as a
function of the lattice parameter and the wavelength can be extracted from figure 4, as shown in figure 5(a).
From figure 5(a), the overall largest index difference is formed between AIN and By ;9sGag g9, N with the same
lattice constant of 3.113 A, ranging from 0.14 to 0.27 at 370 (UVA)—1500 (IRB) nm. In general, the index
difference narrows when the lattice parameter shifts away from that of AIN towards those of GaN and BN.

Subsequently, the knowledge of the refractive index of lattice-matched material pairs can be utilized to
compute the theoretical bandwidth A\ of the material pair at various wavelengths for the DBR according to
equation (2) where ), is the design wavelength, p is reflection coefficient, nzand ny are high and low refractive
indices, respectively [61]. The results are shown in figure 5(b). The overall largest bandwidth values are 26—65
nm at the wavelength range 370— 1500 nm which is found for the same AIN /By 10sGag g9, N pair due to it having
the largest index difference. Note that the bandwidth gradually reduces as the wavelength is reduced, which is the
reason behind the difficulty of designing a large bandwidth DBR for the UV range.
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Figure 4. The 3D chart of the refractive indices of the Al;Ga, 4N, BAl, N, and B,Ga; N alloys (0<x<1) as a function of the photon
wavelength (175-1500 nm) and the lattice parameter (2.5-3.2 A) for the design of lattice-matched UV DBR pairs. The horizontal black
curves represent the refractive indices of particular alloy compositions that we directly calculated using density functional theory. The
three surfaces connecting the horizontal black (and red) curves are interpolated to show the expected indices of other compositions of
the three alloys. The vertical blue curves represent borders of 100 nm thick slices based on the wavelength axis. Any two alloys with the
same color have the same lattice parameter. The 3D chart is cut off when the B,Ga;_,N absorption is near 90% for a 1 ym thick film
since ByGa, N is always the lower bandgap material for any lattice matached pair comprising BGaN/AlGaN or BGaN/BAIN
heterostrucutres (see figure 1 and dashed lines in figure 3). Therefore, the 3D chart applies for optically-transparent (or
semitransparent) scenarios only.
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Finally, the AIN /By 108Gag g9, N pair was employed to simulate the performances of a few DBRsata UVA
wavelength of 375 nm. Accordingly, the thickness of the AIN and By ;0sGag g9, N layers are 45.5 and 40.2 nm,
respectively, based on their refractive indices of 2.06 and 2.33 at 375 nm. This wavelength is chosen partially due
to recent interests in developing the UVA vertical-cavity surface-emitting lasers (VCSELSs) near 375 nm for
important applications including the atomic clock [14, 62—-65]. The simulation was conducted by Lumerical
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Figure 6. (a) DBR peak reflectivity as a function of the number of the lattice-matched AIN /By 10sGag 892N pairs at 375 nm and (b)
reflectivity as a function of wavelength for the 25-pair AIN /By ;03Gag 39N DBR. The inset of (a) shows a 3-pair DBR as an example.

Table 1. Performance comparison of different DBR structures for UVA applications. The bandwidth is taken at 90% of the peak reflectivity.

Result type Structure Lattice mismatch Ao (nm) Pairs Reflectivity A\ (nm) An
This work Bo.10sGag.89:N/AIN 0% 375 10 0.933 26 0.27
25 0.998

Experiment [24] Al g3Ing 17N/ Aly >,Gag gN 0.511% 368 45 0.993 13 N/A

Experiment[19] Aly 1,Gay gsN/GaN 0.265% 368 40 0.916 4.4 0.12

Simulation [19] 369 40 0.972 5.6

Experiment [20] Alg.15Gag N/ Al gGag ,N 1.37% 347 20 0.93 18 0.22
347 25 0.99 22

Experiment [21] Aly,Gay gN/GaN 0.436% 380 60 0.99 8 0.17

FDTD Solutions [66]. The assumption of no optical absorption was made since 375 nm is below the bandgaps of
AIN and By 198Gag 9o N (figure 3(d)) [52].

We started this simulation by sweeping different numbers of pairs to see the change in the peak reflectivity.
Figure 6(a) indicates that the peak reflectivity reaches over 93% with only 10 pairs, exceeds 99% at 20 pairs, and
plateaus after 25 pairs. The reflectivity spectrum of the 25-pair DBR is shown in figure 6(b), where the peak
reflectivity is 99.8%. The bandwidth measured at 90% reflectivity is 26 nm as indicated by the arrow in
figure 6(b).

Table 1 shows the comparison of the 10-pair and the 25-pair AIN/By ;0sGag g9oN DBRs with a few reported
DBRs designed for UVA applications, indicating superior properties of our proposed DBR which include no
lattice mismatch, smaller number of pairs, higher reflectivity, and larger bandwidth. Itis important to note that
the results of this study can be extended to numerous other material pairs for lattice-matching or lattice-
engineering needs at various wavelengths. Even though we focus on UV applications here, the results are
applicable to longer wavelength such as visible and infrared, though lattice contributions to the dielectric
behavior of these materials may need further study for a more accurate representation at wavelengths longer
than the near infrared range.

4. Conclusion

We have investigated the refractive index of AlGaN, BAIN and BGaN alloys using hybrid density functional
theory. The main goal is to design lattice-matched optical structures in the ultraviolet range. The AlGaN results
were shown to reasonably match experimental reports. A peculiar behavior of the refractive indices of different
boron alloys is found unlike other known nitrides. This unique behavior may be attributed to the electronic
properties of the boron atom and the low slope of the refractive index of wurtzite BN. Our data is interpolated to
fit different compositional needs, and could be used in designing a myriad of lattice-matched and lattice-
mismatched heterostructures for photonic and optoelectronic devices. Structures made of these materials could
benefit from the large range of refractive indices and refractive index differences for all wavelengths down to the
deep UV range. A lattice-matched structure with a high difference in refractive index of By 19sGag g9,N/AlIN is
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chosen as an example. It is used to demonstrate an optimized DBR at 375 nm having a peak reflectivity of 99.8%
and a bandwidth of 26 nm with only 25 pairs. The number of pairs could be increased or decreased to tune the
DBR’s reflectivity. These results are useful for lattice matching and lattice engineering of UV compatible
materials opening the door for different applications, including vertical emitters such as VCSELs.
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