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Abstract—As a 2D material, MXene has emerged as an excellent
electrode material for optoelectronic devices due to its high con-
ductivity and hydrophilic surface. Here, the Ti3C2-based MXene
was employed to construct the Ti3C2/ε-Ga2O3 Schottky junction
photodetector. The fabricated device demonstrated a self-powered
operation manner with an extremely low dark current (0.07 pA),
an outstanding light on/off switch ratio (2.5×106), a remarkable
photo-response speed (43 ms/145 ms), a responsivity (R) of 15.5
mA/W, an external quantum efficiency (EQE) of 7.5% and a de-
tectivity (D∗) of 2.15×1011 Jones. Such excellent photodetection
performance that is comparable or even higher than those of
Ga2O3 Schottky photodetectors previously reported are originated
from the excellent conductivity of MXene, good crystallization of
ε-Ga2O3, and their well-matched energy level. Additionally, our
Schottky junction device is capable of sensing solar-blind UV region
and exhibits excellent stability in the air environment. The perfect
combination of 2D MXene and wide-bandgap ε-Ga2O3 proposes
a novel route for the self-powered Schottky devices.

Index Terms—MXene, ε-Ga2O3, self-powered photodetector,
Schottky junction.
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I. INTRODUCTION

THE emergence of 2D materials and their heterostructures
with fascinating electronic and optical properties provided

an additional opportunity for building optoelectronic and elec-
tronic devices [1], [2]. A new branch of 2D materials, including
transition metal carbides, carbonitrides, and nitrides, namely
MXenes, was initially discovered by Barsoum et al. in 2011
[3]. The excellent performances such as high conductivity and
hydrophilic surface indicate that MXenes can be good candi-
dates for electronics and optoelectronics materials [4], [5]. The
2D MXenes based 2D-2D and 2D-3D van der Waals (vdW)
heterostructures, are of unique ability to interact with other
materials without being restricted by lattice matching, hence
have recently attracted intense interest. However, the further
applications of 2D-2D vdW heterostructures in large-scale and
high-integrated devices is severely suffered from the small size
and the complicated transfer process [6]. Compared to the
2D–2D vdW heterostructures, the 2D–3D vdW heterostructures
that combine the advantages of 2D materials with the desired
functions of the developed semiconductors are ideal in promis-
ing applications. In particular, MXenes based 2D-3D vdW het-
erostructures such as MXene/silicon [7], MXene/perovskite [8],
and MXene/GaAs [9], etc. have been marginally designed for
photodetectors (PDs) [10]. Inspired by all of these, reasonable
selection of the semiconductors and serious-minded design of
the interface are of the great significance toward exploring
excellent 2D heterostructures for advanced performance PDs
[11].

As an ultra-wide bandgap semiconductor, Ga2O3 sparks wide
interest for the building of solar-blind PDs because it holds
several advantages over other materials, such as instinct solar-
blind UV absorption with a wide bandgap (∼4.9 eV), excellent
thermal and chemical stability [12]–[20]. Ga2O3 has five phases
of α, β, γ, δ and ε. Among these polymorphs, the β-phase is
investigated most extensively for optoelectronics. In contrast,
other metastable phases have been studied less, but they also
have unique application characteristics in device applications
[21]. The ε phase Ga2O3 has hexagonal and orthorhombic
crystal structure. Therefore, the ε-Ga2O3, as a kind of Ga2O3

isomer, is increasing of great interest [22]. For instance, Chao
and Mishra revealed that a two-dimensional electron gas is
formed at the ε-Ga2O3/CaCO3 interface with a charge density
of 1014 cm-2

, which is two orders of magnitude higher than
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that formed at the (AlxGa1-x)2O3/β-Ga2O3 interface [23]. In
addition, ε-Ga2O3 UV PDs have been investigated by lots of
research groups, including ours, and these PDs have significant
UV detection capabilities [24]–[27].

Here, based on the MXene/ε-Ga2O3 Schottky junction het-
erostructure, a self-powered solar-blind UV PD with high re-
sponsivity (15.5 mA W−1), ultralow dark current (0.07 pA), and
high light on/off ratio (2.5 × 106) under zero biasing voltage
at 254 nm was devised. Moreover, to get more understanding
into the inherent mechanism of the PD, the dependence of
response time on the light intensity and running modes has
been investigated in detail. Also, the device without packaging
already exhibits excellent stability after exposure under ambient
temperature for 45 days, showing the great potential of using
MXene/ε-Ga2O3 Schottky junction as a promising low energy-
cost self-powered solar-blind UV detectors or solar-blind UV
photocells.

II. EXPERIMENTS

A. ε-Ga2O3 Film Growth

An ε-Ga2O3 layer was epitaxially grown on a (0001) sapphire
substrate, carrying via a customized MOCVD growth system
with a reaction chamber. Triethylgallium (TEGa) and O2 were
taken as gallium and oxygen precursor, respectively. TEGa and
Oxygen gas were transported by the carrier gas (Ar) into the
growth chamber. The growth process was carried out under the
conditions of 25 Torr pressure and 470 °C temperature, and
maintain 60 mins.

B. Synthesis of Ti3C2

Ti3AlC2 (MAX phase) powder (1 g) was dispersed in a
mixture solution of 9 M HCl (20 mL) and LiF (1 g), followed
by stirring at room temperature for 24 h to etch Al atom.
The acidic suspension was washed with deionized water via
centrifugation (3500 rpm for 3 min) several times, until pH ≥ 6.
The resulting suspension was redispersed in deionized water and
then centrifuged at 3500 rpm for 1 h. The suspension containing
single-layer 2D Ti3C2 nanoflakes was obtained and further used
for later drop-casting.

C. Device Preparation

After the epitaxial deposition of the ε-Ga2O3 film, the col-
loidal solution of prepared Ti3C2 was drop casted on the ε-
Ga2O3 surface. After drying at 40 °C for 10 h, the silver
and indium electrodes were fabricated on Ti3C2 and ε-Ga2O3

thin films, respectively (Fig. 2a). The distance between the In
electrode and Ti3C2 is 308 μm.

D. Characterization and Measurement

The crystal structure and micromorphology features of the as-
prepared samples were obtained using X-ray diffraction (XRD,
D8 Advance, Bruker), scanning electron microscopy (SEM,
S4800, Hitachi) and transmission electron microscopy (TEM,

Fig. 1. (a) XRD θ-2θ scan of the ε-Ga2O3 film; (b) SEM image of the ε-
Ga2O3 film; (c) XRD pattern of the Ti3C2 film; (d) TEM image of the Ti3C2.

Fig. 2. (a) The schematic diagram of the Ti3C2/ε-Ga2O3 Schottky photo-
voltaic PD. The inset is the crystal structure of Ti3C2, where the purple and gray
balls correspond to Ti and C atoms, respectively. (b) I–V characteristic of the
Schottky PD with and without 254 nm UV light (2000 μW/cm2) in logarithmic
scale. (c) Electron energy level diagrams of the Schottky PD with no applied
voltage.

Tecnai G2 F30, FEI), respectively. The optical absorption spec-
trum measurement of the film was tested by UV-vis spectroscopy
(UV-1800PC, China). The spectroscopic photoresponse of the
device was measured using a monochromator combined. The
photoelectric performance was recorded using a UV lamp as
a light source, and a semiconductor characterization system
(Keithley 4200), respectively.

III. RESULTS AND DISCUSSION

The XRD pattern shows diffraction peaks at 19.11°, 38.83°
and 59.83° (Fig. 1a), which are assigned to the (002), (004)
and (006) planes of the orthorhombic crystal structure of the
ε-Ga2O3 film, respectively. The value of FWHM for (002) plan
is 0.145. The result indicates a (002)-single preferred orientation
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of the ε-Ga2O3 film. In addition, the FWHM of ε-Ga2O3 (002)
plan is 2242 arcsec obtained from the rocking curve (Fig. S1).
The SEM image is also acquired on the surface of the sample as
shown in Fig. 1b, indicating a fine-grained morphology of the
thin film. d. The thickness of ε-Ga2O3 film is 350 nm measured
from the cross-section SEM, as shown in Fig. S2.

The UV-vis absorption spectrum of the prepared ε-Ga2O3 film
is shown in Fig. S3, from which the obtained band gap (Eg) of
the ε-Ga2O3 film is 4.92 eV by extrapolating the line of the Tauc
diagram to the x-axis of photon energy (inset of Fig. S3).

For investigations of phase information of Ti3C2, Ti3C2 was
drop casted on Si substrate. The corresponding XRD spectra
of Ti3C2 MXene sheets are shown in Fig. 1c, where the peaks
of (002) and (004) planes are found at 2θ = 6.9° and 14.0°,
respectively. Besides, the morphology of the Ti3C2 sheets was
characterized by using TEM as shown in Fig. 1d.

The schematic diagram of the Ti3C2/ε-Ga2O3 Schottky junc-
tion PD is presented in Fig. 2a. The inset of Fig. 2a shows the
schematic of Ti3C2, where the purple and gray balls correspond
to Ti and C atoms, respectively.

Fig. 2b depicts the I–V behavior of the Schottky PD, the dark
current of the Schottky PD is ultralow (≈0.07 pA at -5 V), which
is significantly lower compared to those of the Schottky junction
Ga2O3-based PDs in previous reports[51]. First, such a low dark
current can be attributed to a relatively low concentration of
defects in the high crystalline quality ε-Ga2O3 film. Second,
the formation of a “space charge region” (SCR) between the
surface of Ti3C2 MXene and ε-Ga2O3 might lead to a surface
barrier, which could also reduce the dark current. The value
of the photo-dark current ratio (Ip/Id) is 2.5×106, confirming
that the device has a high signal-to-noise ratio and high-quality
photosensitive switching characteristic.

The working mechanism of the Ti3C2/ε-Ga2O3 Schottky PD
could be explicated from the energy band configuration, as illus-
trated in Fig. 2c, where Φb is the Schottky barrier height, EFM is
the Fermi-level of the Ti3C2 MXene, EFS is the Fermi-level of
the ε-Ga2O3, EC is the conduction band, EV is the valance band,
and Φbi is the built-in potential. The work function (WM) of the
Ti3C2 is 4.6 eV and the electron affinity(χ) of Ga2O3 is 4 eV,
respectively, so the value ofΦb is 0.6 eV [28], [29]. The ε-Ga2O3

and Ti3C2 generate a Schottky junction and form an SCR in the
ε-Ga2O3 side. The Schottky junction is dominated by a majority
of carrier transport. The direction of the built-in electric field is
pointing from ε-Ga2O3 to Ti3C2. Under light illumination, the
photon-generated carriers in or near the SCR are separated and
conducted by the internal driving force (built-in electric field).
In this configuration, the holes are transported to Ti3C2, while
the electrons are collected by the In electrode through ε-Ga2O3,
forming the photocurrent.

Another important characteristic of the PD is the dependence
of photocurrent with light intensity. The current-voltage charac-
teristics of the device at 254 nm illumination of different inten-
sities are shown in Figs. S4 and 3a (high resolution). The results
indicate that the photocurrent of the Schottky junction PD has
a strong dependence on the light intensities. The photocurrent
increases with the illumination intensity, since the density of

Fig. 3. (a) I-V behaviors of Schottky PD at different illumination intensities
with 0 V. (b) Photoresponse of Ti3C2/ε-Ga2O3 Schottky PD under different
UV illumination intensities at zero bias.

the photoexcited carrier is proportional to the luminous flux
absorbed.

Fig. 3b shows the photoresponse switching behavior of the
Schottky junction PD under repeated light on/off cycles at 0 V
under illumination with intensities varying from 0.1 μW/cm2

to 2000 μW/cm2. Even under the ultralow light intensity of 0.1
μW/cm2, the photo-to-dark current switch ratio of the photo
signal is 5, indicating an excellent photoresponse capability
under the weak signals.

Fig. S5 shows the incident optical power-dependent output
electrical signal. The dependence is given by Iph = kPθ, where,
Iph is the photocurrent, k is constant for a particular wavelength,
P is the input optical power, the θ is the empirical value related to
the complex process of trapping, and recombination within the
device, which was estimated as 0.818 by fitting. This linear vari-
ation of the photocurrent suggests that the Schottky junction PD
has obvious intensity-dependent features and can be fabricated
for accurate solar-blind UV detection.

The response time is the capacity of a PD to respond to
a changing incident light signal. Generally, it is defined as
“ON” and “OFF” or “recovery” times. The devices operated
in photovoltaic and photoconductive modes are also expected
to have different transient light switching characteristics. We
compared the performance of photo-switching characteristics
of the Ti3C2/ε-Ga2O3 Schottky photovoltaic PD with metal-
semiconductor-metal (MSM) pristine In/ε-Ga2O3/In conductive
PD (Fig. 4a). The distance of In electrodes of conductive device
is about 280 μm. Fig. 4b shows the transient photocurrent
response at 254 nm for the two types of PDs with a bias voltage
of 0 V and -0.1 V, respectively. In order to accurately compare
the response speed of the two devices at the same photocurrent
(10 nA), the Schottky device and the conductive device were
tested under 400 μW/cm2 and 600 μW/cm2 UV illumination,
respectively. In the absence of light irradiation, the Ti3C2/ε-
Ga2O3 Schottky PD shows an ultralow dark current, only at the
pA level. Even without an external bias voltage, when the light is
“turned on”, the photocurrent reached ∼ nA; while the signal is
“turned off”, the current rapidly returns to the initial value. The
results clearly show that Schottky PD has obvious and stable
transient photo-response characteristics. The rise/decay times
are obtained by fitting the curves using the formula (1a) and
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Fig. 4. (a) The schematic diagram of the Ti3C2/ε-Ga2O3 Schottky photo-
voltaic PD and In/ε-Ga2O3/In conductive PD. (b) Photoresponse of Ti3C2/ε-
Ga2O3 PD.and In/ε-Ga2O3/In PD. The response speed of (c) The Ti3C2/ε-
Ga2O3 photovoltaic detector at 0 V and (d) the In/ε-Ga2O3/In conductive
detector at -0.1 V.

(1b)

I (t) = I0 exp

(
− t

τr

)
− I0 (1a)

I (t) = I0 − I0 exp

(
− t

τd

)
(1b)

where I0 is the value of current when illumination is in turned
on/turned off states, and τ r and τd are the rise time and decay
time. The values of the rise and decay times are fitted to be
215 and 341ms for Schottky PD (Fig. 4c), 431 and 439 ms
for conductive PD (Fig. 4d), respectively. Compared with the
conductive PD without Ti3C2 electrode, the response speed of
the Schottky PD with Ti3C2 nanosheets electrode is improved
and faster, which shows that using Ti3C2 as Schottky contact
causes an obvious improvement of the response speed of the
device because of the construction of the built-in potential.

In addition to operating under the photovoltaic mode, Schot-
tky PD could work in the photoconductive mode, i.e., under
applied voltage. To further analyses the response times of the
Schottky PD under both the forward voltage and reverse voltage,
the transient response of the Schottky photovoltaic PD under
15 μW/cm2 illumination at different voltages is displayed in
Fig. 5a. The photocurrent at the reverse bias is less than those at
the forward bias because of rectifying effect, but response speed
at the reverse voltage is faster than those at the forward voltage.
Obviously, as shown in Figs. 5b and 5c, under 15 μW/cm2, the
rise/decay times of 0.79 s/0.109 s at -4 V are much shorter than
those of 2.518 s/0.429 s at 4 V. A possible mechanism is pro-
posed to explain above results. Compared with the condition of
working under forward bias, more photogenerated electrons and
holes are swept and then transferred toward the corresponding

electrodes, due to the widening of the SCR and higher field in
the SCR under the reverse bias (Fig. 5e and 5f). Thus, it exhibits
a faster response at the reverse voltage.

We further analyze the variation of the response time with
applied biases. As shown in Fig. 5d, the τ r increases with applied
bias, while τd decreases with applied bias. (This situation is sim-
ilar to that whether the Schottky device operates at forward bias
or reverse bias). Such a dependence where rise times increase
with bias might be caused by the persistent photo-conductivity
(PPC). At higher biasing voltages, the application of a high elec-
tric field makes these photogenerated carriers be released from
defect centers (such as oxygen vacancies), resulting in a high
photoconductance gain, but at the cost of a slower photodetection
speed [30]. The decrease in the decay time with the applied bias
is due to the higher applied bias and the faster drift velocity [31].

Figs. 6a and 6b show response time of the Ti3C2/ε-Ga2O3

Schottky photovoltaic device and In/ε-Ga2O3/In conductive de-
vice at different illumination power densities with a bias voltage
of 0 V and -0.1 V, respectively. The response speed has a similar
tendency with power density, in which the τ r and τd decrease
with the illumination intensities, a phenomenon attributed to the
trap filling. The photocurrent transients are influenced by the
filling of traps, which are-most pronounced when the injection
level is raised with increasing photon flux. The most remarkable
effect of the higher light density is the shortening of the rise
and decay time. This general observation is due to the filling of
deep trap states which lose their influence in the early stage
of the photocurrent transient. This means that trap filling is
more easily excited at stronger optical intensities, and hence
improves the transport behavior (response speed) [32], [33].
Apparently, as the optical powers increase, the response time
for Ti3C2/ε-Ga2O3 Schottky PD decreases faster than that of
In/ε-Ga2O3/In conductive PD. The built-in electric field at the
Ti3C2/ε-Ga2O3 interface is essential to improve separation and
transportation of the photogenerated electrons and holes, and
therefore promoting a more rapid response speed. The results
were consistent with those shown in Fig. 4(b, c, d).

Responsivity (R), external quantum efficiency (EQE), and
special detectivity (D∗) are critical FOMs (Figure of Merit) for
PDs and are related to each other, which is provided in Fig. 6c.

The responsivity of PD can be written as.

R =
Ip − Id
P × S

(2)

Here Ip, Id, P, and S represent the photocurrent, dark current,
light intensity, light signal exposed area. Fig. 6c shows the R vs
light intensities plot, which decreases with increasing light inten-
sities. The high responsivity (15.5 mA/W) at lower illumination
intensity (0.1 μW/cm2) indicates outstanding performance in
the sensing of low optical power. The responsivity of our PD
is higher than other Schottky junction Ga2O3 PDs [8]–[12],
because of the high crystallization of ε-Ga2O3 and excellent
conductive of Ti3C2.

The EQE, which is used to describe the ratio number of
electrons excited to the number of incident photons, is described

Authorized licensed use limited to: KAUST. Downloaded on December 11,2021 at 15:25:02 UTC from IEEE Xplore.  Restrictions apply. 



YAN et al.: TI3C2/ε-GA2O3 SCHOTTKY SELF-POWERED SOLAR-BLIND PHOTODETECTOR WITH ROBUST RESPONSIVITY 3803208

Fig. 5. (a) The photoresponse performance of the Schottky photovoltaic PD at different bias. The response times of the Ti3C2/ε-Ga2O3 Schottky junction PD
at (b) -4 V and (c) 4 V. (d) The variation of response speed with applied bias. Electron energy level diagrams of the device: (e) with applied reverse bias (f) with
applied forward bias.

Fig. 6. (a) The rise and (b) decay times of the Schottky PD and conductive PD with different light intensities at 0 V and -0.1 V, respectively. (c) The R, EQE, and
D∗ of Schottky PD as a function of 254 nm illumination intensity at 0 V. (d) Wavelength-dependent responsivity of the Schottky PD at 0 V bias. (e) Time-dependent
response of the photovoltaic PD measured at as-prepared and after 40 days at 0 V. (f) Responsivity and dark current of our device and other previously reported
Ga2O3 Schottky self-powered PDs.
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TABLE I
THE DEVICE PARAMETERS COMPARISON OF PDS BASED ON GA2O3 SCHOTTKY JUNCTION

by:

EQE = R
hc

λq
(3)

Here h, c, λ, and q represent Planck’s constant, the speed of
light, the wavelength, and the quantity of charge. The variation
in EQE at different light illumination intensities for Schottky
PD is shown in Fig. 6c and the EQE has a maximum value of
7.5 at the minimum illumination intensity.

D∗, which is utilized to describe the smallest detectable signal,
is derived as follows.

D∗ =

√
S ·R√
2qId

(4)

The incident light illumination intensity-dependent D∗ at 0
V are shown in Fig. 6c. We note that D∗ decreases with the
incident illumination intensity and reaches a maximum value of
up to 2.15×1011 Jones at the minimum light density, indicating
the device has the ability to detect the weak solar-blind UV
light. The aforementioned response characterizations indicate
an excellent performance of Ti3C2/ε-Ga2O3 PD in terms of high
sensitivity to weak-light detection. The value of R, EQE, and D∗
decrease with increasing light intensity, which can be attributed
to self-heating.

To further investigate the working wavelength range of the
Schottky PD, the responsivity is measured in the range from
200 to 500 nm at zero bias (Fig. 6d). The responsivity of the
device with a maximum value of ∼ 5.6 mA/W at 255 nm, is
negligible to visible light, which closely matches the UV-vis
absorption spectra in Fig. S3. For example, the UV-vis rejection
ratio (R255nm/R400nm) is found to be 2.9×104, confirming that
Ti3C2/ε-Ga2O3 Schottky PD owns high wavelength selectivity
with low background noise and could be a good solar-blind UV-
sensitive PD.

The stability of PD is considered, as a significant challenge
for their practical application and commercialization, therefore it
was investigated by testing the performance upon the exposure
to air environment for 40 days under multi-cycle 254 nm UV
illuminating at zero bias (Fig. 6e). The unchanged photocurrent
indicates the excellent stability of the PD.

As shown in Fig. 6f, the Ti3C2/ε-Ga2O3 Schottky PD con-
comitantly shows high responsivity and low dark current, com-
pared to the other self-powered Schottky junction Ga2O3 PDs.
For a more comprehensive comparison, Table I lists the critical
parameters of Schottky PDs based on the Ga2O3, including
our work and other previously reported studies. Compared with
other Ga2O3 Schottky PDs, our device shows higher responsiv-
ity, EQE, rejection ratio, lower dark current, moderate detec-
tivity, and response speed. The superior performance indicates
that our Ti3C2/ε-Ga2O3 Schottky PD is a greatly promising
candidate for the fabrication of high responsivity and low noise
PDs.

IV. CONCLUSION

In summary, a self-powered Schottky junction solar-blind PD
was constructed by combing the drop-casted Ti3C2 layer and
the MOCVD deposited ε-Ga2O3 layer. Such UV PD exhibits
high responsivity of 15.5 mA/W, EQE of 7.5%, rejection ratio
of 2.9×104, ultra-low dark current of 0.07 pA, and high Ip/Id
of 2.5×106 at zero bias, overall showing superior performances
compared to the previously reported Ga2O3 based Schottky self-
powered PDs. The high performance of Schottky PD may well
be attributed to the high crystal quality of ε-Ga2O3, excellent
conductivity of Ti3C2, and built-in field at the ε-Ga2O3/Ti3C2 in-
terface. With the introduction of the internal photovoltaic effect,
the rise time and decay time are greatly decreased compared
with photoconductive ε-Ga2O3-based photodetectors. Mean-
while, the device exhibits outstanding stability and wavelength
selectivity as well. This work highlights a feasible strategy to
develop a photoelectronic device with high performance in a
self-powered mode.
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