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Abstract

This paper describes the methodology used by the team RedSea in the data com-

petition organized for EVA 2021 conference. We develop a novel two-part model to

jointly describe the wildfire count data and burnt area data provided by the compe-

tition organizers with covariates. Our proposed methodology relies on the integrated

nested Laplace approximation combined with the stochastic partial differential equa-

tion (INLA-SPDE) approach. In the first part, a binary non-stationary spatio-temporal

model is used to describe the underlying process that determines whether or not there is

wildfire at a specific time and location. In the second part, we consider a non-stationary

model that is based on log-Gaussian Cox processes for positive wildfire count data, and

a non-stationary log-Gaussian model for positive burnt area data. Dependence between

the positive count data and positive burnt area data is captured by a shared spatio-

temporal random effect. Our two-part modeling approach performs well in terms of
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the prediction score criterion chosen by the data competition organizers. Moreover,

our model results show that surface pressure is the most influential driver for the oc-

currence of a wildfire, whilst surface net solar radiation and surface pressure are the

key drivers for large numbers of wildfires, and temperature and evaporation are the

key drivers of large burnt areas.

Keywords: INLA-SPDE; Marked point process model; Multivariate processes; Non-stationarity;

Spatio-temporal model; Wildfire modeling.

1 Introduction

Wildfires have significant social and economic impact, and might pose significant threat

to infrastructure, human safety, and natural resources (Rosenthal et al., 2021; Burke et al.,

2021). Furthermore, wildfires are an important source of CO2 emissions and contribute

substantially to the global greenhouse effect (Liu et al., 2014). Over the past four decades,

the wildfire burnt area has roughly quadrupled in the United States (US), which has led to

substantial increases in US government expenditures on wildfire suppression in recent years

(Burke et al., 2021). There is thus a pressing need to develop flexible statistical models for

wildfire activity and to improve our understanding of wildfire risks so as to support fire

management decision-making.

Wildfire risks consist of various components, such as fire occurrence, fire intensity and

growth, fire duration, and fire size. Statistical science has played a key role in modeling and

prediction of these components; see Taylor et al. (2013) and Xi et al. (2019) for an overview.

In the data competition of the Extreme Value Analysis (EVA) 2021 conference, the main

goal is modeling and prediction of aggregated monthly numbers of wildfire occurrences and

their burnt areas in each cell of a regular grid covering the continental US.

Log-Gaussian Cox processes, which are Poisson point processes with intensity specified

by a Gaussian random field, have been identified as useful models for wildfire occurrences
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(Serra et al., 2014; Opitz et al., 2020). As for the burnt area, which represents the size

of wildfires, a variety of different models have been considered in the literature, including

(truncated) power-law distributions (Cumming, 2001; Butry et al., 2008), the Weibull dis-

tribution (Reed & McKelvey, 2002), or the log-normal distribution (Hantson et al., 2016),

for positive burnt area data , as well as the generalized Pareto distribution for large wildfires

only (Holmes et al., 2008). The number of wildfires and their burnt areas are clearly linked

since if one of them is zero, the other one must also be zero, and a large number of wild-

fires might correspond to large burnt areas. It is thus sensible to model these two wildfire

characteristics jointly.

A natural approach is to consider a marked point process model with point process

identifying the occurrences of wildfires and marks identifying the sizes. However, the marks

might not be separable from the points (Schoenberg, 2004), and thus one challenge is how to

specify the dependence between them. Here, we propose a novel two-part model to jointly

describe the wildfire count data and burnt area data with environmental covariates, by

combining the integrated nested Laplace approximation fast inference with the stochastic

partial differential equation (INLA-SPDE) approach. In the first part, we use a binary

spatio-temporal model Z(s, t), s ∈ D, t ∈ T , for the underlying process that determines

wildfire occurrences, i.e., whether or not there is wildfire at time t and location s, where

D ∈ R
2, T ∈ R are the spatial and temporal domains, respectively. The first-part modeling

is very useful since it accounts for the zero-inflated pattern in the data (more than 60% of

the observed count and burnt area data are zeros); see Liu et al. (2019). In the second part,

we consider a non-stationary log-Gaussian Cox process model XCNT for the shifted positive

wildfire count data (minus 1, specifically), i.e., the point pattern, and a non-stationary

Gaussian model XBA for the logarithm of the positive burnt area data, i.e., the marks. We

capture the dependence between the point pattern and marks by a shared spatio-temporal

random effect.

The prime goal of this data competition is to estimate the predictive distribution of
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Table 1: Zero and missing value pattern in the variables CNT and BA of the wildfire dataset

BA
CNT

0 > 0 NA Sum

0 279762 0 18375 298497
> 0 0 173168 12318 185486
NA 18831 12222 48947 80000
Sum 298593 185390 80000 563983

wildfire occurrences and burnt areas at certain times and sites. In terms of the prediction

score criterion chosen by the data competition organizers, our two-part modeling approach

clearly outperforms the benchmark model, which is a generalized linear model with Poisson

response for the wildfire count data and a generalized linear model with Gaussian response

for the logarithm of positive burnt area data. Furthermore, we also aim to identify the key

drivers for Z, XCNT, and XBA, respectively.

The paper is structured as follows. Section 2 introduces the data and presents some

exploratory analysis. Section 3 details our modeling approach. Section 4 presents the results

with interpretations. Section 5 concludes with a discussion.

2 Data

The dataset contains monthly wildfire information covering March to September from 1993

to 2015 in the continental United States. More specifically, the study area is partitioned into

3503 cells based on a 0.5◦ × 0.5◦ grid of longitude and latitude coordinates. The number of

wildfires and their burnt areas in each grid cell are then aggregated monthly and this yields

the two main variables in the dataset, namely counts (CNT) and burnt area (BA). There are

also 35 auxiliary variables, providing the spatial, temporal, meteorological and land cover

information. More details can be found in Opitz (2022).

Table 1 shows the zero and missing value pattern in the variables CNT and BA of this

dataset. One can observe that if one of them is zero, the other one must also be zero, and

more than 60% of the observed values are zeros. For statistical modeling of zero-inflated
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Figure 1: Empirical mean of positive CNTs and BAs, i.e., excluding observations of zeros,
in all the grid cells in each month.

nonnegative continuous data, two different approaches are generally adopted, i.e., a Tobit

model or a two-part model (Liu et al., 2019). The two-part modeling approach is adopted

here since it allows us to model the positive wildfire count data and positive burnt areas

jointly; see Section 3 for more details on the proposed model.

Figure 1 depicts the monthly empirical mean of positive CNT and BA in all grid cells.

It shows that large wildfire burnt areas often occur for two or three consecutive months,

which might be due to the fact that large wildfires often persist for a long period. Moreover,

very large wildfires seldom occur in two nonconsecutive months in the same year due to

the reduction of wildland vegetation. This observation has motivated us to construct spatio-

temporal models rather than pure spatial models, aiming to capture the temporal dependence

between months.

Figure 2 shows the the logarithm of the empirical mean and standard deviation of the

positive CNTs and BAs over time at each grid cell. One can clearly observe spatial non-

stationarity in the mean and standard deviation of the positive observations of both CNT

and BA. Moreover, the pattern in the non-stationarity of CNT and BA appear to be rather

different. Specifically, the western coast and southeastern part of the US appear to have

larger numbers of wildfires (large CNTs), but most of the large wildfires (large BAs) appear
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Figure 2: Empirical mean and standard deviation (SD) of positive CNTs and BAs over
all months at each grid cell. The grid cells where there are no positive observations are
shown in white. The grid cells with only one positive observation, or more than one positive
observations but they are equal (resulting in zero SD), are also shown in white in the lower
panel.

to occur in the middle- and south-west of the US. Motivated by this observation, we propose

to use non-stationary spatial models for CNT and BA; see Section 3 for details of our method

to capture spatial non-stationarity in the mean and standard deviation of CNT and BA.

3 Modeling and Inference

3.1 Two-part Model

In this section we describe our two-part modeling approach. Although it is conceptually

convenient to think of our constructed models over continuous time and space, we have to

discretize the temporal and spatial domain in order to estimate our model in practice. Our

main assumption is that the probability of wildfire occurrence in the binary process, the
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intensity function of the wildfire point pattern, and the density function of the marks do not

vary within each temporal and spatial unit. Here, the temporal unit is chosen as one month

and spatial unit is one grid cell.

The first part of our model is a binary logistic process Z(s, t), s ∈ D, t ∈ T , which

describes whether or not there is wildfire at site s and time t. The sets D ∈ R
2, T ∈ R

are the spatial and temporal domains, respectively. More specifically, our model has the

following structure:

Z(s, t) | p(s, t) ∼ Bernoulli(p(s, t)),

logit(p(s, t)) = log
{ p(s, t)

1− p(s, t)

}

= βZ
0 + β

Z,time
1 tyear + β

Z,time
2 tmonth+

20
∑

i=1

β
Z,land
i xland

i (s) +

10
∑

i=1

β
Z,clim
i xclim

i (s, t)+

WZ
1 (s) +WZ

2 (s, a(t)), (1)

where βZ
0 , β

Z,time
i , β

Z,land
i , β

Z,clim
i are the regression coefficients to estimate. There are 32 co-

variates in total in the fixed effects, namely 2 temporal covariates tyear ∈ {1993, 1994, . . . , 2015}

and tmonth ∈ {3, 4, . . . , 9}, 20 spatial covariates xland
i , i = 1, . . . , 20 including 18 land cover co-

variates and 2 altitude-related covariates, and 10 meteorological covariates xclim
i , i = 1, . . . , 10.

The process WZ
1 (s) in (1) is a non-stationary spatial random effect aiming to capture

the spatial dependence and non-stationarity in space. The non-stationarity in WZ
1 (s) is

incorporated in a similar way as Ingebrigtsen et al. (2014) who impose a parametric function

of explanatory variables in the parameters that define the Matérn SPDE model. Here we

choose a linear function in terms of the empirical marginal variance as the explanatory

variable. More precisely, we model WZ
1 (s) through the Matérn SPDE model

{κ2 −∆}ν+1τ(s)WZ
1 (s) = Ṁ(s), s ∈ D,

where ν > 0 is a smoothness parameter and here set to 1, ∆ is the Laplacian operator, Ṁ
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is Gaussian white noise (Whittle, 1963), and where we set

log{τ(s)} = log(τ0) + θZ1 + θZ2 − σ̂Z(s)θZ3 ,

log{κ} = log(κ0)− θZ1 + θZ2 ,

with τ0, κ0 constants, σ̂Z(s) the empirical standard deviation of Z(s, t) at site s over all

months, and θZ1 , θ
Z
2 , θ

Z
3 hyperparameters that we need to estimate. In this case the solution

WZ
1 (s) is a non-stationary Gaussian random field because τ varies with location. Further-

more, the resulting non-stationarity only lies in the marginal variances and we approximately

have the marginal variance

σ(s)2 ≈
1

4πκ2τ(s)2
.

For more details about the SPDE approach and the construction of non-stationary models,

we refer to Lindgren et al. (2011); Ingebrigtsen et al. (2014) and Krainski et al. (2019).

The process WZ
2 (s, a(t)) in (1) is stationary spatio-temporal random effect defined on

the monthly level, i.e., a(t) ∈ {3, . . . , 9} denotes the month corresponding to time t and

the effects in different years are considered as replicates, aiming to capture the temporal

dependence between months and the remaining spatial dependence that is left out by the

non-stationary model WZ
1 (s). The temporal structure is defined in an autoregressive manner

(AR(1), specifically), i.e.,

WZ
2 (s, a(t)) = ρWZ

2 (s, a(t)− 1) +
√

1− ρ2ǫa(t)(s), ρ ∈ (−1, 1),

for a(t) ∈ {4, 5, . . . , 9}, where WZ
2 (s, 3) = ǫ3(s), and ǫa(t)(s) are spatial Matérn SPDE

innovation fields.

In the second part, we consider modeling the positive observations of CNT and BA jointly.

In order to use a model based on marked point Poisson processes, we subtract the positive

CNTs by 1 to transform the data from range {1, 2, 3, . . .} to nonnegative integers. Then
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the resulting point pattern is modeled by a Poisson process XCNT with intensity Λ(s, t), and

logarithm of the marks (log BA) are modeled by a non-stationary Gaussian process XBA.

Specifically, XBA and log Λ have the following additive structures:

XBA(s, t) = βBA
0 + β

BA,time
1 tyear + β

BA,time
2 tmonth+

20
∑

i=1

β
BA,land
i xland

i (s) +
10
∑

i=1

β
BA,clim
i xclim

i (s, t)+

WBA
1 (s) +WBA

2 (s, a(t)) + ǫBA(s, t),

log Λ(s, t) = βCNT
0 + β

CNT,time
1 tyear + β

CNT,time
2 tmonth+

20
∑

i=1

β
CNT,land
i xland

i (s) +

10
∑

i=1

β
CNT,clim
i xclim

i (s, t)+

WCNT
1 (s) +WCNT

2 (s, a(t)) + αWBA
2 (s, a(t)),

where α, βBA
0 , βCNT

0 , β
BA,type
i , β

CNT,type
i , type ∈ {time, land, clim} are regression parameters

to estimate, ǫBA(s, t) can be thought of as a noise or measurement error process which

has independent and identical Gaussian distribution with zero mean and unknown precision

parameter at any time and space, WCNT
1 (s), WBA

1 (s) are non-stationary spatial random

effects with non-stationarity constructed in the same way as W Z
1 (s), and WCNT

2 (s, a(t)),

WBA
2 (s, a(t)) are stationary spatio-temporal random effects with AR(1) temporal structures

constructed as W Z
2 (s, a(t)). The dependence between XBA and log Λ(s, t) is specified by

the shared random effect WBA
2 (s, a(t)), and controlled through the parameter α > 0. Prior

distributions and hyperparameters are discussed in the next section.

3.2 Bayesian Inference using INLA

For each of the random effects W j
i , i = 1, 2, j ∈ {Z,BA,CNT}, we use the SPDE approach

to approximate the Gaussian random fields with Matérn covariance by Gaussian Markov

random fields, thus enabling computationally efficient inference with INLA (Rue et al., 2009;
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Mesh 1, 3967 nodes Mesh 2, 743 nodes

Figure 3: Triangulation over continental US. Green dots indicate the observational sites.
Left panel: fine mesh with 3967 nodes for spatial random effects W

j
1 , j ∈ {Z,BA,CNT};

right panel: coarse mesh with 743 nodes for spatio-temporal random effects W
j
2 , j ∈

{Z,BA,CNT}.

Lindgren et al., 2011). The SPDE approach is based on a triangulation of the bounded

spatial domain D. Due to computationally considerations, we here choose a fine mesh with

3967 nodes (mesh 1 in Figure 3) for the spatial random effects W
j
1 , j ∈ {Z,BA,CNT} and

a coarse mesh with 743 nodes (mesh 2 in Figure 3) for the spatio-temporal random effects

W
j
2 , j ∈ {Z,BA,CNT}.

For the model Z, we have 6 hyperparameters, i.e., θZ1 , θ
Z
2 , θ

Z
3 for the non-stationary spa-

tial random effect WZ
1 , and a range parameter, a variance parameter, and the temporal

autoregression coefficient ρ for the spatio-temporal random effect WZ
2 . Here we choose a

penalized complexity (PC) prior (Simpson et al., 2017; Fuglstad et al., 2019) for the range

parameter, variance parameter, and ρ of random effect WZ
2 , and default vague priors in

the R-INLA package (Lindgren & Rue, 2015) for other parameters. Specifically, the PC

prior distributions are fixed such that the prior probability of having a covariance range

less than 55 km is 0.1, of having a variance larger than 0.25 is 0.1, and of having temporal

autocorrelation parameter ρ below 0 is 0.05. The joint model of XCNT and XBA has 14

hyperparameters, including one precision parameter for ǫBA, three parameters for each of
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W
j
i , i = 1, 2, j ∈ {BA,CNT}, and parameter α for the shared random effect. We again

use PC priors for the temporal autoregression parameter, the range parameter, and vari-

ance parameter of the spatio-temporal random effect W j
2 and default vague priors for other

parameters. The PC priors for W j
2 , j ∈ {BA,CNT} are set the same as that for WZ

2 .

INLA provides a useful tool for Bayesian modeling and inference for latent Gaussian

models. This is the case for our two-part model as Z is a binomial regression model with

logit link, XBA is a Gaussian model, and XCNT is a Poisson regression model with log link,

all of which are conditionally independent of the data level and include latent effects that

are jointly Gaussian. The new package PARDISO (van Niekerk et al., 2021) has enabled

parallel computation in INLA and further increased its scalability, which allows us to fit our

complex model to this massive wildfire data. The computation time for fitting our first-part

model is around 2 hours on a cluster with 48 cores and 2.9 TB memory, and around 42

hours for fitting our second-part model on the same cluster. The R code is available at

https://github.com/zhongwei-zh/EVA2021-data-competition.

4 Results

4.1 Prediction Performance

We first report the prediction performance of our model as this is the goal of this data

competition. All participants of the competition are required to submit an estimation of the

distribution of CNT and BA evaluated at a list of 28 severity values, at 80000 different time

and locations. The prediction score of each participant is then calculated based on a modified

version of weighted ranked probability score chosen by the organizers, where relatively strong

weight is assigned to large values of CNT and BA; see Opitz (2022) for more details. For our

model, the prediction score for CNT is 3498.73 and the one for BA is 3389.51, which clearly

outperforms the benchmark model whose prediction scores for CNT and BA are 5565.15 and

4244.36, respectively.
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4.2 Hyperparameter Estimates

Table 2: Posterior mean estimates and 95% credible intervals of hyperparamters in the
models Z,XCNT, XBA.

Model Random effect Hyperparameter Estimate 95% CI

Z WZ
1 θZ1 2.07 [1.97, 2.17]

WZ
1 θZ2 -1.73 [-1.84, -1.63]

WZ
1 θZ3 0.073 [0.052, 0.093]

WZ
2 Spatial range (km) 429 [413, 447]

WZ
2 Standard deviation 1.99 [1.94, 2.03]

WZ
2 Temporal autocorrelation 0.851 [0.845, 0.856]

XCNT WCNT
1 θCNT

1 2.38 [2.36, 2.39]
WCNT

1 θCNT
2 -0.83 [-0.85,- 0.82]

WCNT
1 θCNT

3 -0.33 [-0.34, -0.31]

WCNT
2 Spatial range (km) 389 [378, 398]

WCNT
2 Standard deviation 0.64 [0.61, 0.66]

WCNT
2 Temporal autocorrelation 0.812 [0.804, 0.818]

Shared random effect α 0.703 [0.696, 0.711]

XBA WBA
1 θBA

1 2.05 [2.03, 2.06]
WBA

1 θBA
2 -0.52 [-0.55, -0.50]

WBA
1 θBA

3 0.089 [0.082, 0.096]

WBA
2 Spatial range (km) 175 [171, 179]

WBA
2 Standard deviation 1.38 [1.36, 1.39]

WBA
2 Temporal autocorrelation 0.482 [0.470, 0.494]

ǫBA Precision 0.268 [0.266, 0.270]

In this section we report estimates of the hyperparameters in our model. Table 2 presents

the posterior mean estimates and 95% credible intervals of all the hyperparameters. The

results show that non-stationarity in the spatial random effects W Z
1 , W

CNT
1 , and WBA

1 are

all significant since the 95% credible intervals for θZ3 , θCNT
3 and θBA

3 do not cover zero.

Temporal dependence between months are very significant since estimates of the temporal

autocorrelation parameters for W Z
2 , W

CNT
2 , and WBA

2 are all far from zero and their 95%

credible intervals do not contain zero. Furthermore, spatial dependence for Z and XCNT

seems to be stronger than that for XBA as estimates of the range parameters of WZ
2 and
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WCNT
2 are much larger than that of WBA

2 . Finally, the dependence between XCNT and XBA

is significant and inclusion of the shared random effect is necessary since estimate of the

coefficient α is far from zero and its 95% credible interval does not contain zero.

4.3 Influence of Covariates on Z,XCNT, XBA

Table 3: Three most positively and negatively influential covariates (based on the values
of their posterior means) for the models Z,XCNT, XBA. The type of the covariates, the
posterior mean estimates of the corresponding coefficients, and their 95% credible intervals
are presented.

Model Covariate Type Estimate 95% CI

Z Shrubland Land cover -2.67 [-4.44, -0.91]
Cropland rainfed herbaceous cover Land cover -2.04 [-3.54, -0.55]

Grassland Land cover -1.76 [-3.16, -0.37]

Surface pressure Climate 2.50 [1.88, 3.12]
Temperature Climate 0.62 [0.46, 0.77]

Surface net solar radiation Climate 0.56 [0.50, 0.63]

XCNT Shrubland Land cover -0.43 [-0.79, -0.07]
Dewpoint temperature Climate -0.28 [-0.35, -0.22]

Cropland rainfed herbaceous cover Land cover -0.25 [-0.55, 0.06]

Surface net solar radiation Climate 0.40 [0.36, 0.43]
Surface pressure Climate 0.32 [0.17, 0.46]
Temperature Climate 0.21 [0.14, 0.28]

XBA Dewpoint temperature Climate -0.58 [-0.71, -0.45]
Altitude mean Topography -0.49 [-0.82, -0.17]
Shrubland Land cover -0.40 [-1.54, 0.74]

Temperature Climate 0.60 [0.48, 0.73]
Evaporation Climate 0.38 [0.34, 0.42]

Surface net solar radiation Climate 0.19 [0.14, 0.25]

In addition to accurate wildfire prediction, we also aim at identifying the most influential

covariates on the three different responses Z,XCNT, andXBA. Following the recommendation

of Gelman et al. (2008), we standardize all the covariates in a preliminary step to make

them have mean 0 and standard deviation 1, so that the effects of different covariates are

comparable and interpretable. Table 3 presents the three most positively and negatively
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influential covariates and their estimated coefficients for the models Z,XCNT, XBA. One

interesting observation is that the most influential covariates for the three models Z,XCNT,

andXBA are in general not the same. More specifically, surface pressure is the most positively

influential covariate to the occurrence of a wildfire, which might be the case because lightning

is the principle natural cause of wildfire ignition and surface pressure is often quite high

when lightning occurs. Moreover, while high surface pressure may lead to large numbers of

wildfires (possibly because of lightning), high water evaporation, which often occurs when

the temperature is high, the air is dry and the wind is strong, leads to large burnt areas.

For the negatively influential covariates, shrubland is a significant covariate for three models,

especially for Z and XCNT. This might be due to the fact that large areas of shrubland means

less human activity and this results in less human-caused wildfires. Furthermore, high dew

point temperature leads to less wildfires and smaller burnt areas, which might be due to the

fact that the higher the dew point temperature, the greater the amount of moisture in the air.

Finally, altitude is a negatively influential covariate for XBA, which might be explained by

the fact that high altitude corresponds to lower temperature and often less human activity.

5 Discussion

In this paper we have proposed a novel two-part statistical model for jointly modeling zero-

inflated wildfire count data and burnt area data. Our model clearly outperforms the bench-

mark model in terms of its prediction performance. Although it performs slightly worse than

the model proposed by the best-performing team (named “BlackBox”) of this data compe-

tition, which uses algorithmic models based on deep learning methods, our model yields

interpretable results and some understanding of the most important causative drivers that

may trigger wildfires.

There are various interesting future research directions. For instance, one can explore

better usage of the covariates information. Here we only considered a linear additive structure
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of the temporal, land cover, altitude-related, and meteorological covariates, but a non-linear

relationship between some of them and the response variable might exist. Alternatively,

one can investigate how to better build the non-stationary random effects. Here we chose

the empirical marginal variance as the explanatory variable for the variance parameter of

the SPDE model, but one can include further variables as one wishes, as long as the added

computational cost is acceptable. One could also consider constructing more complex space-

varying regression models as in Opitz et al. (2022). All these efforts might be rewarded with

a better prediction performance.

Finally, here we did not consider asymptotic models justified by extreme value theory

for large values of CNT or BA. One reason is that current spatio-temporal extremes models

are limited to problems of moderate dimensions and are not suitable for the massive wildfire

dataset. Another practical reason is that although an approach similar to Opitz et al. (2018)

or Castro-Camilo et al. (2019) may be taken to consider a generalized Pareto distribution

for high threshold exceedances of log BA, a key feature in the burnt area data is that they

are bounded from above, i.e., burnt area cannot exceed the area of their respective grid cells.

This means that the generalized Pareto distribution should be truncated at some point above

the threshold, which then brings new modeling challenges and might also involve substantial

extra computational cost. Therefore, investigation of how to integrate extreme value theory

in this data application is another interesting future research direction.
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