
Conjugate Bayesian Modeling and Inference In
High-dimensional Spatial Statistics:
Conquering New Challenges

Sudipto Banerjee
SIAM, February 24th, 2022



Collaborators

Abhirup Datta (JHU) Debangan Dey (JHU) Barbara Engelhardt (Princeton)

Andrew Finley (MSU) Rajarshi Guhaniyogi (TAMU) Andrew Jones (Princeton)

Didong Li (Princeton/UCLA) Michele Peruzzi (Duke) Lu Zhang (Columbia)

1



Example: Alaska Tanana Valley Forest Height Dataset (FD-
CMAB, JCGS, 2019)

Forest height and tree cover Forest fire history
• Forest height (red lines) data from LiDAR at 10× 106 locations
• Knowledge of forest height is important for biomass assessment,

carbon management etc
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Example: Alaska Tanana Valley Forest Height Dataset (FD-
CMAB, JCGS, 2019)

Forest height and tree cover Forest fire history
• Goal: High-resolution domain-wide prediction maps of forest height
• Covariates: Domain-wide tree cover (grey) and forest fire history

(red patches) in the last 20 years
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Analyzing the data

Models used:

• Non-spatial regression: yFH = β0 + βtreextree + βfirexfire + ε

Figure: Variogram (defined as var{Z(`+ h)− Z(`)}) of the residuals from
non-spatial regression indicates strong spatial pattern
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Bayesian regression for BIG DATA

• Conjugate Bayesian hierarchical linear model:

yi |β, σ2 ind∼ N(x>i β, σ2) , i = 1, 2, . . . , n ;
β |σ2 ∼ N(µβ , σ2Vβ) ; σ2 ∼ IG(a, b) .

• Exact Bayesian inference:

σ2 | y ∼ IG(a∗, b∗) β |σ2, y ∼ N(Mm, σ2M) , where
m = V−1

β µβ + X>y , M−1 = V−1
β + X>X ,

a∗ = a + n/2 , b∗ = µ>β V−1
β µβ + y>y −m>M−1m .

• What if the data cannot be stored/loaded into available workspace?

• HADOOP: Map-Reduce framework (Divide & Conquer) with cloud
computing.
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Bayesian regression on HADOOP

• Partition data as Dk = {yk ,Xk}, k = 1, 2, . . . ,K , where each yk is
nk × 1, Xk is nk × p and N =

∑K
k=1 nk .

• Sequential (“streaming”) updates:

p(β, σ2 |D1, . . . ,Dk+1) ∝ p(β, σ2 |D1, . . . ,Dk )× p(Dk+1 |β, σ2)

• Parallel architecture: compute simultaneously...

mk = V−1
β + X>k yk and M−1

k = V−1
β + X>k Xk ;

m =
K∑

k=1

(mk − (1− 1/K)µβ) and M−1 =
K∑

k=1

(M−1
k − (1− 1/K)V−1

β ) .

• Depends (crucially) on independence across subsets; not suitable for
spatial random fields.
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Geostatistical models for parallel architectures

• yFH(`) = β0 + βtreextree(`) + βfirexfire(`) + w(`) + ε(`)

• w(`) ∼ GP(0,C(·, · |σ2, φ))

• yFH ∼ N(Xβ,Kθ) where Kθ is the spatial covariance matrix:

Kθ = C(σ,φ) + τ 2I , where θ = {σ, φ, τ}

where C(σ2,φ) is the GP covariance matrix derived from C(·, · |σ2, φ).

• Massive data: divide and conquer?

• Bayesian model averaging? Predictive stacking? Exchangability?

• Meta-Kriging (GB, Technometrics 2018): find convex combination
of subset-posteriors closest to the full posterior.

• Analyze “compressed data”: Compressive sensing; Data sketching.
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Bayesian Hierarchical Models

[data | process, parameters]× [process | parameters]× [parameters]

• Construct a joint model...

p(θ, τ, β)×p(w | θ)×p(w̃ |w , θ)×p(y |β,w , τ)×p(Ỹ | w̃ , θ, τ)

• Posterior inference for parameters and the process:

p(θ, τ, β,w , w̃ , Ỹ | y) ∝ p(θ, τ, β,w | y)× p(w̃ |w , θ)× p(Ỹ | w̃ , θ, τ)

• Multivariate example with Y = {Yj (si )} for j = 1, 2, . . . ,m variables:

MN(Y |XB,Kθ,τ ,Σ)×MN(B |µB ,VB ,Σ)× IW (Σ | a,S)× p(θ, τ) .
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Constructing GPs from Graphs
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ABSTRACT
Spatial processmodels for analyzing geostatistical data entail computations that become prohibitive as the
number of spatial locations become large. This article develops a class of highly scalable nearest-neighbor
Gaussianprocess (NNGP)models toprovide fullymodel-based inference for largegeostatistical datasets.We
establish that the NNGP is a well-defined spatial process providing legitimate finite-dimensional Gaussian
densities with sparse precisionmatrices. We embed the NNGP as a sparsity-inducing prior within a rich hier-
archicalmodeling framework and outline how computationally efficientMarkov chainMonte Carlo (MCMC)
algorithms can be executed without storing or decomposing large matrices. The floating point operations
(flops) per iteration of this algorithm is linear in the number of spatial locations, thereby rendering substan-
tial scalability. We illustrate the computational and inferential benefits of the NNGP over competing meth-
ods using simulation studies and also analyze forest biomass from a massive U.S. Forest Inventory dataset
at a scale that precludes alternative dimension-reducing methods. Supplementary materials for this article
are available online.

1. Introduction

With the growing capabilities of Geographical Information Sys-
tems (GIS) and user-friendly software, statisticians today rou-
tinely encounter geographically referenced datasets containing
a large number of irregularly located observations on multiple
variables. This has, in turn, fueled considerable interest in sta-
tistical modeling for location-referenced spatial data; see, for
example, the books by Stein (1999), Moller and Waagepetersen
(2003), Schabenberger and Gotway (2004), and Cressie and
Wikle (2011), and Banerjee, Carlin, and Gelfand (2014) for
a variety of methods and applications. Spatial process models
introduce spatial dependence between observations using an
underlying random field, {w(s) : s ∈ D}, over a region of inter-
est D, which is endowed with a probability law that specifies
the joint distribution for any finite set of random variables. For
example, a zero-centered Gaussian process ensures that w =
(w(s1),w(s2) . . . ,w(sn))� ∼ N(0,C(θ)), where C(θ) is a fam-
ily of covariancematrices, indexed by an unknown set of param-
eters θ. Such processes offer a rich modeling framework and are
being widely deployed to help researchers comprehend complex
spatial phenomena in the sciences. However, model fitting usu-
ally involves the inverse and determinant of C(θ), which typi-
cally require ∼ n3 floating point operations (flops) and storage
of the order of n2. These become prohibitive when n is large and
C(θ) has no exploitable structure.

Broadly speaking, modeling large spatial datasets proceeds
from either exploiting “low-rank” models or using sparsity.
The former attempts to construct spatial processes on a lower-
dimensional subspace (see, e.g., Higdon 2001; Kammann and
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Wand 2003; Rasmussen and Williams 2005; Stein 2007, 2008;
Banerjee et al. 2008; Crainiceanu et al. 2008; Cressie and Johan-
nesson 2008; Finley, Banerjee, and McRoberts 2009) by regress-
ing the original (parent) process on its realizations over a smaller
set of r << n locations (“knots” or “centers”). The algorith-
mic cost for model fitting typically decreases from O(n3) to
O(nr2 + r3) ≈ O(nr2) flops since n >> r. However, when n
is large, empirical investigations suggest that r must be fairly
large to adequately approximate the parent process and the nr2
flops become exorbitant (see Section 5.1). Furthermore, low-
rankmodels performpoorlywhen neighboring observations are
strongly correlated and the spatial signal dominates the noise
(Stein 2014). Although bias-adjusted low-rank models tend to
perform better (Finley, Banerjee, andMcRoberts 2009; Banerjee
et al. 2010; Sang and Huang 2012), they increase the computa-
tional burden.

Sparsemethods include covariance tapering (see, e.g., Furrer,
Genton, and Nychka 2006; Kaufman, Scheverish, and Nychka
2008; Du, Zhang, and Mandrekar 2009; Shaby and Ruppert
2012), which introduces sparsity in C(θ) using compactly sup-
ported covariance functions. This is effective for parameter esti-
mation and interpolation of the response (“kriging”), but it has
not been fully developed or explored for more general infer-
ence on residual or latent processes. Introducing sparsity in
C(θ)−1 is prevalent in approximating Gaussian process likeli-
hoods using Markov random fields (e.g., Rue and Held 2005),
products of lower-dimensional conditional distributions (Vec-
chia 1988, 1992; Stein, Chi, and Welty 2004), or composite like-
lihoods (e.g., Bevilacqua and Gaetan 2014; Eidsvik et al. 2014).
However, unlike low-rank processes, these do not, necessarily,
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ABSTRACT
We introduce a class of scalable Bayesian hierarchical models for the analysis of massive geostatistical
datasets. The underlying idea combines ideas on high-dimensional geostatistics by partitioning the spatial
domainandmodeling the regions in thepartitionusinga sparsity-inducingdirectedacyclic graph (DAG).We
extend the model over the DAG to a well-defined spatial process, which we call the meshed Gaussian pro-
cess (MGP). Amajor contribution is the development of anMGPs on tessellated domains, accompanied by a
Gibbs sampler for the efficient recovery of spatial random effects. In particular, the cubic MGP (Q-MGP) can
harness high-performance computing resources by executing all large-scale operations in parallel within
the Gibbs sampler, improving mixing and computing time compared to sequential updating schemes.
Unlike some existingmodels for large spatial data, a Q-MGP facilitates massive caching of expensive matrix
operations, making it particularly apt in dealing with spatiotemporal remote-sensing data. We compare Q-
MGPs with large synthetic and real world data against state-of-the-art methods. We also illustrate using
Normalized Difference Vegetation Index data from the Serengeti park region to recover latent multivariate
spatiotemporal random effects at millions of locations. The source code is available at github.com/mkln/
meshgp. Supplementary materials for this article are available online.
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1. Introduction

Collecting large quantities of spatial and spatiotemporal
data is now commonplace in many fields. In ecology and
forestry, massive datasets are collected using satellite imaging
and other remote sensing instruments such as LiDAR that
periodically record high-resolution images. Unfortunately,
clouds frequently obstruct the view resulting in large regions
with missing information. Figure 1 shows this phenomenon in
Normalized Difference Vegetation Index (NDVI) data from the
Serengeti region. Filling such gaps in the data is an important
goal as is quantifying uncertainty in predictions. This goal
is achieved through stochastic modeling of the underlying
phenomenon, which involves the specification of a spatial or
spatiotemporal process characterizing dependence from a finite
realization. Gaussian processes (GPs) are a customary choice
to characterize spatial dependence, but their implementation is
notoriously burdened by theirO(n3) computational complexity.
Consequently, intense research has been devoted in recent years
to developing scalable models for large spatial datasets—see
detailed reviews by Sun, Li, and Genton (2011) and Banerjee
(2017).

Computational complexity can be reduced by considering
low-rank models; among these, knot-based methods motivated
by “kriging” ideas enjoy some optimality properties but
oversmooth the estimates of spatial random effects unless the
number of knots is large, and require corrections to avoid
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overestimation of the nugget (Banerjee et al. 2008; Cressie
and Johannesson 2008; Banerjee et al. 2010; Guhaniyogi et al.
2011; Finley, Banerjee, and Gelfand 2012). Other methods
reduce the computational burden by introducing sparsity in the
covariance matrix; strategies include tapering (Furrer, Genton,
and Nychka 2006; Kaufman, Schervish, and Nychka 2008) or
partitioning of the spatial domain into regions with a typical
assumption of independence across regions (Sang and Huang
2012; Stein 2014). These can be improved by considering a
recursive partitioning scheme, resulting in a multi-resolution
approximation (MRA; Katzfuss 2017). Other assumptions
on conditional independence assumptions also have a good
track record in terms of scalability to large spatial datasets:
Gaussian random Markov random fields (GMRF; Rue and
Held 2005), composite likelihoodmethods (Eidsvik et al. 2014),
and neighbor-based likelihood approximations (Vecchia 1988)
belong to this family.

The recent literature has witnessed substantial activity sur-
rounding the so called Vecchia approximation (Vecchia 1988).
This approximation can be regarded as a special case of the
GMRF approximations with a simplified neighborhood struc-
ture motivated from a directed acyclic graphical (DAG) repre-
sentation of a GP likelihood. Extensions leading to well-defined
spatial processes to accommodate inference at arbitrary loca-
tions by extending the DAG representation to the entire domain
include nearest neighbor Gaussian processes (NNGPs; Datta,

© 2020 American Statistical Association

spNNGP meshed
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Sparse precision matrices (e.g., Vecchia’s approximation;
NNGP)

N(w | 0,Kθ) ≈ N(w | 0, K̃θ) ; K̃−1
θ = (I − A)>D−1(I − A)

I − A D−1 K̃−1
θ

• det(K̃−1
θ ) =

∏n
i=1 D−1

ii , K̃−1
θ is sparse with O(nm2) entries
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• Computing A and D

for(i in 1:(n-1) {

Pa = N[i+1] # neighbors of i+1

a[i+1,Pa] = solve(K[Pa,Pa], K[i+1, Pa])

d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1, Pa],a[i+1,Pa])

}

• We need to solve n − 1 linear systems of size at most m ×m in
parallel.

• Quadratic form:

qf(u,v,A,D) = u[1] ∗ v[1] / D[1,1]
for(i in 2:n) {

qf(u,v,A,D) = qf(u,v,A,D) + (u[i] - dot(A[i,N(i)], u[N(i)]))
∗(v[i] - dot(A[i,N(i)], v[N(i)]))/D[i,i]

}

• Determinant: det(K̃θ) =
∏n

i=1 d[i,i]
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Alaska Tanana Valley data (Finley et al., JCGS, 2019)

Conjugate NNGP Collapsed NNGP Response NNGP
β0 2.51 2.41 (2.35, 2.47) 2.37 (2.31,2.42)
βTC 0.02 0.02 (0.02, 0.02) 0.02 (0.02, 0.02)
βFire 0.35 0.39 (0.34, 0.43) 0.43 (0.39, 0.48)
σ2 23.21 18.67 (18.50, 18.81) 17.29 (17.13, 17.41)
τ 2 1.21 1.56 (1.55, 1.56) 1.55 (1.54, 1.55)
φ 3.83 3.73 (3.70, 3.77) 4.15 (4.13, 4.19)

CRPS 0.84 0.86 0.86
RMSPE 1.71 1.73 1.72

time (hrs.) 0.002 319 38

Table: Parameter estimates and model comparison metrics for the Tanana
valley dataset

• Conjugate model produces estimates and model comparison
numbers very similar to the MCMC based NNGP models

• For 5× 106 locations, conjugate model takes 7 seconds
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Highly Multivariate Graphical Gaussian Processes DDB, 2021

• Complex dependencies are often modeled using CI graphs (Cox &
Wermuth, 1996)

• But what about complex dependencies among processes (Each node
is {wi (s) : s ∈ Rd})? And a very large number of nodes, too?
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Highly Multivariate Graphical Gaussian Processes DDB, 2021

• What does this mean : wi (·) ⊥ wj (·) | {w−(ij)(·)}? Dalhaus (2000):

cov (zi (s), zj (s)) = 0 for all s, s ′ ∈ D,

where zi (s) = wi (s)− E[wi (s) |σ({wk (·) : k ∈ V \ {i , j}})].

• Graphical GP (GGP): {wi (·) : i = 1, 2, . . . , q} ∼ GGPG if
wi (·) ⊥ wj (·) | {w−(i,j)(·)} according to CI graph G.

• Given a CI graph G and any cross-covariance function, there exists a
unique (and optimal) GGPG whose cross-covariance agrees with the
given cross-covariance for all adjacent pairs in the graph.
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Highly Multivariate Graphical Gaussian Processes DDB, 2021

• Constructing a GGP from a given C(S) over a fixed finite set S:
1. Form an extended graph over V × S using strong product adjacency

rules (to allow “stitching” across random fields);
2. Use Dempster’s (1972) covariance selection to specify

w(S) ∼ N(0,M(S)),
2.1 Mii (S) = Cii (S) for each node i ;
2.2 Zeroes in M(S)−1 correspond to CI relations in G;
2.3 Mij (S) = Cij (S) for all adjacent pairs in G.

3. Extend from finite set S to entire domain using predictive process
with S as knots (Banerjee et al., 2008).

• DDB, 2021 also implement Bayesian inference for an unknown G
using RJMCMC for (embeddable) decomposable graphs (Green &
Thomas, 2013).
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Parallelizable Stitching of Gaussian Processes
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Figure: Stitching Gaussian Processes. Left: Realizations of 4 univariate GPs.
Right: Realization of a multivariate (4-dimensional) GGP created by stitching
together the 4 univariate GPs from the left figure using the strong product
graph over the 4 variables and 3 locations.
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Parallelizable Chromatic Gibbs Samplers

Figure: Chromatic sampling for GGP with a gem graph between 5 variables:
Left: Gem graph and coloring used for chromatic sampling of the
variable-specific parameters. Right: Coloring of the corresponding edge graph
GE (GV ) used for chromatic sampling of the cross-covariance parameters. In
chromatic sampling, we can use this coloring to sample nodes belonging to
same color in parallel bringing down the complexity by significant amount.
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Example DDB, 2021: 99 stations over 89 days

Prediction performance for full
analysis

Estimates of time-specific
cross-correlations
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Burgeoning literature on DAG-based spatial models...
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