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Pop Stats for Big Geodata
• Observing an increase of produced geodata.
• Techniques to process millions of observations 

have lagged behind.
• Implementations that work with irregularly 

spaced observations are rare.

Large-scale climate/weather modeling



Perform Climate/Weather Forecasting 
Simulations
• Applications for climate and environmental predictions are among the most time-consuming 

simulations workloads running on HPC facilities.
• Computational statistics: univariate/multivariate large spatial / space-time datasets in 

climate/weather modeling.

Examples of large climate/weather data
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Problem Statement
• Today, weather and climate data are often huge!

• Collect a large set of Z observations at a given n locations.

• Process the Z observations, e.g., temperature and precipitation.

• Predict missing observations in the remote locations which are related to the observed locations.

• Maximum Likelihood Function: an important machine learning technique for estimating statistical 
parameters required to perform prediction inference in climate and environmental applications.

• Complexity requirements:
• Arithmetic cost: the linear solver and log-determinant involving n-by-n covariance matrix

• 𝑂(𝑛!) floating-point operations and 𝑂(𝑛")memory  (assuming univariate case).

• Memory footprint: 10# locations require  8 TB memory!



The ExaGeoStat Software Stack

#1 Fugaku

#2 Summit

#24 HAWK

#89 Shaheen-II

AArch64

X86 CPU

Fujitsu A64FX

NVIDIA V100



The ExaGeoStat Framework
• Synthetic Dataset Generator

• Generates large-scale geospatial datasets which can be separately used 
as benchmark datasets for other software packages.

• Maximum Likelihood Estimator (MLE)
• Evaluates the maximum likelihood function on large-scale geospatial 

datasets.

• Supports full machine precision (full-matrix), Tile Low-Rank (TLR)
approximation, low-precision approximation accuracy.

• ExaGeoStat Predictor
• Predicts unknown measurements at known geospatial locations by 

leveraging the MLE estimated parameters.



Synthetic Dataset Generator
• Builds the covariance matrix ∑(𝜽𝒕) using a specific kernel and truth 

parameter vector 𝜽𝒕.
• Computes Cholesky factorization of ∑(𝜽𝒕) : ∑(𝜽𝒕) = V . VT

• Generates Z vector: 𝒁 = 𝑽. 𝒆, 𝑒 ~ 𝑁(0, 1)
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 Trivariate parsimonious Matern Stationary
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Univariate synthetic spatial data

Bivariate synthetic spatial data

Trivariate synthetic spatial data

Univariate synthetic space/time data 

Univariate non-stationary synthetic spatial data

Univariate non-Gaussian 
synthetic spatial data



Maximum Likelihood Estimator (MLE)
• The likelihood function:

• Optimization loop with different 𝜽 to maximize  the likelihood function estimation until convergence

• Generate the covariance matrix 𝜽 using a  specific kernel and the parameter vector 𝜽(𝜽 comes from 
the optimization function)

• Solve the log determinant and the inverse operations requires a Cholesky factorization of the 
given covariance matrix ∑(𝜽𝒕) Cholesky factorization requires 𝑂(𝑛!) floating-point operations 
𝑂(𝑛")memory storage.

• NLOPT optimization library has been used to maximize the likelihood function until convergence in 
both cases. Recently, we improved the efficiency of the optimization process by using parallel 
PSwarm optimization algorithm to run several likelihood estimation step at the same time.



Supported Covariance Functions

Univariate Matern Kernel

Multivariate Parsimonious Kernel 

Space/Time Non-Separable Kernel 

Tukey g-and-h Non-Gaussian Field with Kernel 

Multivariate Flexible Kernel Powered Exponential Kernel



ExaGeoStat Predictor
• Assuming ∑!! ∈ ℝ"×$, ∑!% ∈ ℝ"×$, ∑%! ∈ ℝ$×", and ∑%% ∈ ℝ$×$

𝑍!
𝑍%

∼ 𝑁"&$(
𝜇!
𝜇% , ∑!! ∑!%

∑%! ∑%%
)

• The associated conditional distribution can be represented as

𝑍!|𝑍% ∼ 𝑁"(𝜇! + ∑(𝜃)!%∑(𝜃)%%
'! (𝑍% − )𝜇% , ∑(𝜃)!! − ∑(𝜃)!%∑(𝜃)%% ∑(𝜃)%!

• Assuming that the known measurements vector 𝑍% has a zero-mean function (i.e., μ!=0 , μ%=0), the unknown 
measurements vector 𝑍! can be predicted using, 𝑍! = ∑!%∑%%'!𝑍%, assuming 𝑍% has a zero-mean function 
(μ!=0 , μ%=0)

• Solution of system of linear equation (∑%%'!𝑍%) needs also a Cholesky factorization of ∑%%.

Sea Surface temperature Agulhas, South Africa.



An Effective Approach Based on a 
Separation of Concerns



Matrix Data Structure in ExaGeoStat

Exact Computation TLR Computation Double/Single 
Precision Approximation

Double/Single/Half 
Precision Approximation

Dense DP

Dense SP

Dense DP Dense DP

Dense SP

Dense HP

Dense DP

TLR DP

!(𝛉)



Mixed-Precision Algorithms
• Achieve higher performance, faster time to solution (benefits from reduction of operations 

and data movement).
• Satisfy the trade-off between precision arithmetic combinations and ultimate application 

accuracy. 
• Reduce power consumption by decreasing the execution time (energy saving). 
• Extract performance from NVIDIA GPUs:

V100 NVIDIA NVLink A100 NVIDIA NVLink

Peak FP64 Performance 7.5 TF 9.7 TF

Peak FP64 Tensor Core --- 19.5 TF

Peak FP32 Performance 15 TF 19.5 TF

Peak Tensor Float 32 --- 156 TF

Peak FP16 Tensor Performance 120 TF 312 TF



Mixed-Precision for Environmental Applications

Red Arrow: 
speedup from 

hardware, same 
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KAUST Shaheen-II HLRS HAWK

ORNL Summit

Mixed-Precision for Environmental Applications



Accuracy Assessment using Synthetic Datasets



Prediction Assessment using Synthetic Datasets



Assessment on Real Datasets

2M soil moisture data - the US 



Assessment on Real Datasets

2M wind speed- Arabian sea



Qualitative Results with ExaGeoStat

• Sameh Abdulah , Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "ExaGeoStat: A high performance unified 
software for geostatistics on manycore systems." IEEE Transactions on Parallel and Distributed Systems 29, no. 12 (2018): 
2771-2784.
• Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc G. Genton, and David E. Keyes. "Parallel approximation of the maximum 

likelihood estimation for the prediction of large-scale geostatistics simulations." In 2018 IEEE International Conference on 
Cluster Computing (CLUSTER), pp. 98-108. IEEE, 2018.

2M soil moisture data - the US 
(MSPE:0.03507)

1M wind speed data – Middle-East
(MSPE:0.043201)

Univariate Modeling (Exact/TLR approximation):



Qualitative Results with ExaGeoStat

• Mary L. O. Salvaña, Sameh Abdulah, Huang Huang, Hatem Ltaief, Ying Sun, Marc M. Genton, and David Keyes. "High Performance 
Multivariate Geospatial Statistics on Manycore Systems," in IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 11, pp. 
2719-2733, 1 Nov. 2021.

116K Trivariate dataset over the Arabian Sea (MSPE:0.00990)

Multivariate Modeling (Exact /TLR approximation):



Qualitative Results with ExaGeoStat

• Sagnik Mondal, Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc M. Genton, and David Keyes. ”Parallel ." Submitted to SC (2021).

Visualization of the average daily precipitation
over Germany (358 K locations)

Non-Gaussian Modeling
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• Sagnik Mondal, Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc M. Genton, and David Keyes. ” Parallel Approximations of the Tukey g-and-h Likelihoods and 
Predictions for Non-Gaussian Geostatistics”. IPDPS, 2022, accepted.



Qualitative Results

• Mary L. O. Salvaña, Sameh Abdulah, Hatem Ltaief, Ying Sun, Marc M. Genton, and David Keyes. "Massively Parallel Likelihood Function Optimization 
to Accelerate Air Pollution Prediction on Large-Scale Systems." Submitted to PASC22.

Visualization of the log PM2.5 dataset (air 
pollution) over Saudi Arabia (MSPE: 0.001798) 

Spatio-Temporal Modeling

Visualization of the log PM2.5 dataset 
(air pollution) over Midwest US (MSPE: 

0.00280) 

Parallel Optimization Using PSwarm Algorithm



2021 KAUST Competition on Spatial Statistics 
for Large Datasets
• 29 research teams worldwide registered and 21 teams successfully submitted 

their results.
Task Data Model Data size

1a Parameters Estimation Univariate Stationary Matern 90,000

1b Prediction Univariate Stationary Matern Predict 10,000 conditional on 90,000

2a Prediction Tukey g-and-h Predict 10,000 conditional on 90,000

2b Prediction Univariate Stationary Matern
& Tukey g-and-h

Predict 100,000 conditional on 
900,000

• Huang Huang, Sameh Abdulah, Ying Sun, Hatem Ltaief, David Keyes, Marc Genton, “Competition on Spatial Statistics for 
Large Datasets.” JABES 26, 580–595 (2021).

Country US Saudi Arabia Germany France Switzerland China Australia Japan UAE Russia Taiwan Ecuador Russia Chile

# Participants 30 10 5 4 8 3 6 3 1 1 7 1 1 2

• More details: https://cemse.kaust.edu.sa/stsds/2021-kaust-competition-spatial-statistics-large-datasets

• 2nd KAUST SS competition: https://cemse.kaust.edu.sa/stsds/2022-kaust-competition-spatial-statistics-large-datasets



2022 KAUST Competition on Spatial Statistics 
for Large Datasets
• In total, the competition has twenty-eight (28) datasets generated using the 

ExaGeoStat software based on different models and settings as follows:
– Sub-competition 1a includes two datasets which have been generated using a 

univariate spatial model in 2D with 100K (105) geospatial data points.
– Sub-competition 1b includes two datasets which have been generated 

using a univariate spatial model in 2D with 1M (106) geospatial data points.
– Sub-competition 2a includes nine datasets which have been generated 

using a space-time model in 2D×time with 1K geospatial data points and 
100 time points.

– Sub-competition 2b includes nine datasets which have been generated 
using a space-time model in 2D×time with 10K geospatial data points and 
100 time points.

– Sub-competition 3a includes three datasets which have been generated 
using a bivariate spatial model in 2D with 50K geospatial data points.

– Sub-competition 3b includes three datasets which have been generated 
using a bivariate spatial model in 2D with 500K geospatial data points.
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