Norm Matloff University of California at Davis

Fine Tuning the Grouping Approach to Parallelization of Statistics/Machine Learning Methods

Norm Matloff University of California at Davis

2022 SIAM Conference on Parallel Processing for Scientific Computing February 24, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Norm Matloff University of California at Davis

Grouping

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Grouping

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Methods Norm Matloff University of California at Davis

Fine Tuning the Grouping

Approach to Parallelization of Statistics/-Machine Learning

- Parallel comp. for stat methods often uses grouping.
- Break data into chunks of rows.
- Apply stat method to each chunk.
- Average the results.
- Provably efficient for asympt. normal estimators.
- In some cases, superlinear speed up (Matloff, JSS, 2016).

Norm Matloff University of California at Davis

"Old" Parallel Schemes Work on "Modern" Methods?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Norm Matloff University of California at Davis

"Old" Parallel Schemes Work on "Modern" Methods?

- SVM, NNs etc.: Can be parallelized well using grouping (Yancey and Matloff, 2018).
- Collaborative filtering: Most popular approach is SVD etc., well-known parallel tools.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• What about FOCI?

Norm Matloff University of California at Davis

What Is Foci?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What Is Foci?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Methods Norm Matloff University of California at Davis

Fine Tuning the Grouping

Approach to Parallelization of Statistics/-Machine Learning

- Azadkia and Chatterjee, 2018.
- Method for predictor/feature selection.
- Nonparametric, no tuning parameters.
- Motivation: Predicting Y from X. Should we add predictor
 Z? Measure have much less Var(Y | X,Z) is than Var(Y | X).
- Highly computationally intensive.

Norm Matloff University of California at Davis

CRAN Package

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

CRAN Package

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Machine Learning Methods Norm Matloff University of California at

Davis

Fine Tuning the Grouping

Approach to Parallelization of Statistics/-

- Azadkia, Chatterjee, Matloff
- They asked me to get involved because I complained FOCI was too slow :-).
- One part of FOCI is "embarrassingly parallel." Most is NOT.

Norm Matloff University of California at Davis

A Problem in Grouping "Modern" Methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Norm Matloff University of California at Davis

A Problem in Grouping "Modern" Methods

- Modern methods tend to have lots of tuning parameters.
- With *r* groups, we are finding the best tuning par. set for data of size *n*/*r*, not *n*.
- FOCI has no tuning pars., but same issue. It finds a good set of predictor variables for data of size n/r.

• So: How should FOCI be parallelized?

Norm Matloff University of California at Davis

Parallel FOCI

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Parallel FOCI

of Statistics/-Machine Learning Methods Norm Matloff University of California at

Davis

Fine Tuning the Grouping

Approach to Parallelization

Case study of a "modern" stat method. Issues:

- Say we take a grouping approach.
- As noted, the predictors chosen by a smaller dataset (size n/r) will generally be different from (and fewer in number than) those chosen on a larger set (n).

Norm Matloff University of California at Davis

Possible Ways to Combine Group Outputs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Norm Matloff University of California at Davis

Possible Ways to Combine Group Outputs

- Take the union of the *r* predictor sets.
- Take the intersection of the *r* predictor sets.
- Under assumption that the union set is "too much," prune by running FOCI on this set.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The intersection approach wasn't too promising—it often would be empty, especially for large r—and won't be pursued here.

Norm Matloff University of California at Davis

Some (Small-Scale) Examples

Norm Matloff University of California at Davis

Some (Small-Scale) Examples

- African soil data: 1157 \times 3579 (p >> n). Numeric X and Y. Predict pH.
- Million Song data: 515345 × 91. Numeric X and Y. Predict year of release. (50K subset used here.)
- Other datasets not shown.
- Simple quad core.
- Criterion: How well can the selected variables predict Y?
- Prediction models: Linear, polynomial, gradient boosting etc., from **qeML** package.

Norm Matloff University of California at Davis

Results

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Results

Fine Tuning the Grouping Approach to Parallelization of Statistics/-Machine Learning Methods

Norm Matloff University of California at Davis

Timing:

dataset	distrib. comp.	re-run	serial
African soil	31.32	4.02	33.02
Million Song	138.80	75.61	333.11

Accuracy:

dataset	distrib. comp.	re-run	serial
African Soil. qeLin	0.378	0.415	0.365
African Soil, qeGBoost	0.49	0.49	0.49
Million Song, qeLin	6.94	7.08	6.95
Million Song, qeGBoost	7.30	7.20	7.23

Norm Matloff University of California at Davis

Trends, Here and Other Datasets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Norm Matloff University of California at Davis

Trends, Here and Other Datasets

• The proposed grouping approach does improve (in some cases not shown, dramatically).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Accuracy is generally maintained.