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Grouping

• Parallel comp. for stat methods often uses grouping.

• Break data into chunks of rows.

• Apply stat method to each chunk.

• Average the results.

• Provably efficient for asympt. normal estimators.

• In some cases, superlinear speed up (Matloff, JSS, 2016).
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“Old” Parallel Schemes Work on
“Modern” Methods?

• SVM, NNs etc.: Can be parallelized well using grouping
(Yancey and Matloff, 2018).

• Collaborative filtering: Most popular approach is SVD
etc., well-known parallel tools.

• What about FOCI?
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What Is Foci?

• Azadkia and Chatterjee, 2018.

• Method for predictor/feature selection.

• Nonparametric, no tuning parameters.

• Motivation: Predicting Y from X. Should we add predictor
Z? Measure have much less Var(Y | X,Z) is than Var(Y |
X).

• Highly computationally intensive.
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CRAN Package

• Azadkia, Chatterjee, Matloff

• They asked me to get involved because I complained FOCI
was too slow :-) .

• One part of FOCI is “embarrassingly parallel.” Most is
NOT.
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A Problem in Grouping “Modern”
Methods

• Modern methods tend to have lots of tuning parameters.

• With r groups, we are finding the best tuning par. set for
data of size n/r , not n.

• FOCI has no tuning pars., but same issue. It finds a good
set of predictor variables for data of size n/r .

• So: How should FOCI be parallelized?
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Parallel FOCI

Case study of a “modern” stat method.
Issues:

• Say we take a grouping approach.

• As noted, the predictors chosen by a smaller dataset (size
n/r) will generally be different from (and fewer in number
than) those chosen on a larger set (n).
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Possible Ways to Combine Group
Outputs

• Take the union of the r predictor sets.

• Take the intersection of the r predictor sets.

• Under assumption that the union set is “too much,” prune
by running FOCI on this set.

The intersection approach wasn’t too promising–it often would
be empty, especially for large r—and won’t be pursued here.
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Some (Small-Scale) Examples

• African soil data: 1157 x 3579 (p >> n). Numeric X and
Y. Predict pH.

• Million Song data: 515345 x 91. Numeric X and Y.
Predict year of release. (50K subset used here.)

• Other datasets not shown.

• Simple quad core.

• Criterion: How well can the selected variables predict Y?

• Prediction models: Linear, polynomial, gradient boosting
etc., from qeML package.
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Results

Timing:
dataset distrib. comp. re-run serial

African soil 31.32 4.02 33.02

Million Song 138.80 75.61 333.11

Accuracy:
dataset distrib. comp. re-run serial

African Soil. qeLin 0.378 0.415 0.365

African Soil, qeGBoost 0.49 0.49 0.49

Million Song, qeLin 6.94 7.08 6.95

Million Song, qeGBoost 7.30 7.20 7.23
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Trends, Here and Other Datasets

• The proposed grouping approach does improve (in some
cases not shown, dramatically).

• Accuracy is generally maintained.
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