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Abstract

We develop a methodology for modelling and simulating high-dimensional spatial precipita-
tion extremes, using a combination of the spatial conditional extremes model, latent Gaussian
models and integrated nested Laplace approximations (INLA). The spatial conditional extremes
model requires data with Laplace marginal distributions, but precipitation distributions con-
tain point masses at zero that complicate necessary standardisation procedures. We propose
to model conditional extremes of nonzero precipitation only, while separately modelling pre-
cipitation occurrences. The two models are then combined to create a complete model for
extreme precipitation. Nonzero precipitation marginals are modelled using a combination of
latent Gaussian models with gamma and generalised Pareto likelihoods. Four different models
for precipitation occurrence are investigated. New empirical diagnostics and parametric models
are developed for describing components of the spatial conditional extremes model. We apply
our framework to simulate spatial precipitation extremes over a water catchment in Central
Norway, using high-density radar data. Inference on a 6000-dimensional data set is performed
within hours, and the simulated data capture the main trends of the observed data well.
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1 Introduction

Europe is currently experiencing one of its most flood-intense periods within the last 500 years
(Blöschl et al., 2020), and floods are projected to become more frequent and damaging in the future
due to ongoing climate changes (Allan et al., 2020; Yin et al., 2018). Thus, flood mitigation has
the potential of avoiding numerous fatalities and large economical losses (Jongman, 2018). Flood
impacts are often assessed using hydrological impact studies that rely on climate variables such as
temperature and precipitation as input, typically provided from interpolated observational data sets
or climate projections from general circulation models and regional climate models (Giorgi, 2019;
Hanssen-Bauer et al., 2015). However, precipitation is a localised phenomenon with much space-
time variability, which the observational data sets and climate projections are unable to capture
due to computational constraints and sparsity of observations in space and time (Lopez-Cantu
et al., 2020; Westra et al., 2014). The observational data sets may also be too short in time to
fully capture the risks and consequences of floods, as the most devastating extreme weather events
with high flood risk may simply have not happened yet. Stochastic weather generators that simulate
realistic climate data have therefore become an important climate impact assessment method, which
allows for better exploration of complex weather phenomena by providing longer time series, or by
capturing important small-scale spatio-temporal variability that happens “inside the grids” of too
coarse climate projections and interpolated data sets (Ailliot et al., 2015; Maraun & Widmann,
2018).

The spatial distribution of precipitation is important for assessing flood risk, but most stochastic
weather generators are purely temporal, and the spatial stochastic weather generators tend to focus
on simulating “non-extreme” precipitation. Thus, little focus has been given to the simulation
of extreme high-resolution precipitation data in space or space-time. Palacios-Rodríguez et al.
(2020) simulate high-resolution spatio-temporal precipitation extremes, but their method is based
on resampling transformations of observed extreme events, which makes it impossible to generate
events with completely new behaviour. Richards et al. (2022, 2023) develop promising spatial
simulations of extreme hourly precipitation, but their method is based on an inefficient inference
scheme that becomes troublesome for higher-dimensional problems. In this paper we develop a
framework for high-dimensional spatial modelling and simulation of extreme precipitation, which
we apply to a data set of high-resolution hourly precipitation data from a weather radar in Norway.

Weather radars observe precipitation by sending out radio signals and measuring how much
of the signal is reflected back. This makes it possible to create high-resolution spatio-temporal
precipitation data sets. The data sets do not capture marginal distributions as well as, e.g., rain
gauge data, but they provide reliable descriptions of spatio-temporal dependence (Bournas & Baltas,
2022). To the best of our knowledge, radar data are currently among the best available products
for capturing the small-scale spatio-temporal dependence structure of precipitation. Yet, not many
have taken advantage of this, and we are not aware of any previous attempts in the literature of
spatial or spatio-temporal modelling of precipitation extremes based on radar data. We believe that
radar data have been under-used in the literature, and in this paper we attempt to demonstrate the
potential of radar data by using them for producing high-resolution simulations of extreme hourly
precipitation.

Our method builds upon extreme value theory (Davison & Huser, 2015), which has shown great
success at modelling and assessing environmental risks such as extreme temperature (Castro-Camilo
et al., 2021; Simpson & Wadsworth, 2021), precipitation (Huser & Davison, 2014; Opitz et al.,
2018; Richards et al., 2022) and wind (Castro-Camilo et al., 2019). An important part of extreme
value theory is the modelling of extremal dependence, often described by conditional exceedance
probabilities. Given a spatial random field, X(s) with s ∈ S ⊂ R2, we define the conditional
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exceedance probability

χp(s1, s2) = P(X(s1) > F−1
s1 (p) | X(s2) > F−1

s2 (p)),

where F−1
s is the quantile function of X(s). We also define the tail correlation coefficient χ(s1, s2) =

limp→1 χp(s1, s2). Two random variables, X(s1) and X(s2), are called asymptotically dependent if
χ(s1, s2) > 0, and asymptotically independent otherwise. Classical models for spatial extremes are
based on max-stable processes (Davison et al., 2019), which focus on modelling pointwise maxima
and assume that χ is positive while χp is nearly constant with level p ≈ 1. However, experience has
shown that environmental data often exhibit weakening dependence as events become more extreme
(Huser et al., 2021), i.e., χp continuously decreases as p → 1. Thus, alternative models that focus
on capturing the so-called subasymptotic dependence structure explained by χp are crucial for
correctly assessing the risks of spatial extremes in environmental data. A spatial process used for
modelling climate data should also be able to exhibit both asymptotic dependence at short distances
and asymptotic independence at large distances, but most classical extreme models are unable to
describe nontrivial changes in the asymptotic dependence class as a function of distance (Huser &
Wadsworth, 2022). This has led to a surge of new models for spatial extremes with more flexible
subasymptotic and asymptotic dependence structures, including inverted max-stable processes and
max-mixture models, (Wadsworth & Tawn, 2012), max-infinitely divisible processes (Huser et al.,
2021), scale-mixture models (Engelke et al., 2019; Huser & Wadsworth, 2019; Huser et al., 2017),
kernel convolution models (Krupskii & Huser, 2022) and the spatial conditional extremes model
(Wadsworth & Tawn, 2022).

Statistical modelling of spatial dependence often leads to computationally demanding inference.
This is particularly true for spatial extreme value models, where a majority of the most popular
models have to rely on low-dimensional composite likelihood methods for achieving computationally
tractable inference (Castruccio et al., 2016; Padoan et al., 2010). The Gaussian random field is
popular in traditional spatial and spatio-temporal statistics, as it has nice theoretical properties
while allowing for fast and realistic modelling of complex processes (Gelfand et al., 2010). In
particular, the latent Gaussian modelling framework has shown great success within a large range of
applications (Banerjee et al., 2014), by yielding flexible and realistic models that utilise assumptions
of Gaussianity and conditional independence for performing fast inference using integrated nested
Laplace approximations (INLA; Rue et al., 2009). Yet, latent Gaussian models have not achieved
similar success for modelling spatial extremes, as their dependence structures are unsuitable for
most classical spatial extreme value models (Davison et al., 2012). However, Gaussian dependence
structures are becoming more suitable for some newer breeds of spatial extreme value models, such
as the spatial conditional extremes model (Wadsworth & Tawn, 2022). Indeed, the model only
requires a few minor alterations to become a latent Gaussian model, which makes it possible to
perform fast high-dimensional inference with INLA (Simpson et al., 2020; Vandeskog, Martino, &
Huser, 2022). In this paper, we build upon the work of Vandeskog, Martino, and Huser (2022)
and we develop new empirical diagnostics and parametric models for describing components of the
spatial conditional extremes model, as well as improved models for the marginal distributions and
a new methodology for describing precipitation zeros.

The spatial conditional extremes model describes the distribution of a spatial random field
{Y (s)}s∈S⊂R2 , with Laplace marginal distributions, given that it exceeds a large threshold τ at
some preselected location s0 ∈ S. The model states that, for τ large enough, the process [Y (s) |
Y (s0) = y0], with y0 > τ , is approximately equal in distribution to a spatial random field that
only depends on y0 through a location parameter a(s; s0, y0) and a scale parameter b(s; s0, y0) > 0.
An important part of the modelling process is therefore to choose a suitable class of functions for
a(·) and b(·), and to choose a threshold τ that is high enough to yield little model bias, but also
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small enough to efficiently utilise the data. To the best of our knowledge, this threshold selection
problem has not yet attracted much focus in the literature. In this paper we develop new empirical
diagnostics for finding reasonable values of the threshold τ and the forms of a(·) and b(·), and we
propose a new class of parametric functions for a(·) and b(·) that can provide suitable fits to data
at much lower thresholds than used previously (e.g., Vandeskog, Martino, & Huser, 2022), thus
allowing us to utilise more of the data for more efficient inference, without too much model bias.

To fit the spatial conditional extremes model, one must first standardise the data to have Laplace
marginal distributions. However, the marginal distributions of hourly precipitation contain a point
mass at zero, which makes it impossible to directly transform them to the Laplace scale using
the probability integral transform. Richards et al. (2022, 2023) solve this problem by censoring
all zeros, but this leads to less efficient inference techniques such as low-dimensional composite
likelihoods, and it cannot easily be combined with the INLA framework. Inspired by the so-called
Richardson-type stochastic weather generators (Richardson, 1981), we instead propose to model the
conditional extremes of nonzero precipitation intensity, while separately modelling the distribution of
precipitation occurrences in space. We then combine the two models to describe the full distribution
of spatial conditional precipitation extremes.

To transform nonzero precipitation data onto the Laplace scale, we must first estimate their
marginal distributions in space and time. In the spatial conditional extremes literature, this is
commonly achieved using the empirical distribution functions at each location, possibly combined
with a generalised Pareto (GP) distribution for describing the upper tails (Richards et al., 2022;
Shooter et al., 2022; Simpson & Wadsworth, 2021; Wadsworth & Tawn, 2022). However, empirical
distribution functions can be unsuitable if the marginal distributions of the data vary in space
and time, which is often the case for precipitation and other climate variables. Since both the total
amount and the spatial distribution of precipitation are important properties for assessing flood risk,
we here focus equally much on describing properties of the marginal and the spatial precipitation
distribution. Therefore, following Opitz et al. (2018) and Castro-Camilo et al. (2019), we apply a
complex spatio-temporal model based on two different latent Gaussian models for describing the
marginal distributions. The first model describes the bulk of the data using a gamma likelihood,
while the second model describes the upper tails using a GP likelihood.

To the best of our knowledge, there have not been any previous attempts to model precipitation
occurrences in space given that extreme precipitation has been observed at a chosen conditioning
site. We here propose multiple competing models for describing conditional precipitation occur-
rences. The probit model is a common regression model for describing binary data (Fahrmeir et al.,
2013; Verdin et al., 2015), and we propose to model precipitation occurrences using both the stan-
dard probit model and a spatial version of it. We show that both probit models are latent Gaussian
models and perform fast inference for them using INLA. However, our probit models produce oc-
currence processes that are independent of the precipitation intensity process, which is unrealistic.
The probit model also struggles to capture some other important spatio-temporal properties of
smooth high-resolution precipitation data. Thus, we propose an additional third model, denoted
the threshold model, which is designed to capture the dependence on the precipitation intensity
process and to better capture the spatial smoothness properties of precipitation occurrences. For
better baseline comparisons, we also propose an occurrence model in which “no precipitation” is
interpreted as a tiny but positive amount of precipitation, or in other words, that it always rains.

To sum up, in this paper we develop a framework for modelling and simulating extreme precipi-
tation in space, based on latent Gaussian models and the spatial conditional extremes model. This is
applied for simulating precipitation extremes using a high-resolution data set of hourly precipitation
from a weather radar in Norway. We separately model precipitation occurrences and intensities to
avoid problems with the point mass at zero precipitation. The spatial distribution of precipitation
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Figure 1: Left plot: Map of Norway with a square defining the spatial domain S. Right plot: Elevation map
of S. The Rissa radar is displayed at the bottom of the map, and the five conditioning sites used in Section 4
are enumerated and marked by black circles. The Stordalselva catchment is displayed using a black polygon.

occurrences is described using four competing models, while the marginal distributions of nonzero
precipitation are modelled by merging two latent Gaussian models, with a gamma likelihood and a
GP likelihood, respectively. We employ a latent Gaussian model version of the spatial conditional
extremes model for describing the extremal dependence of the nonzero precipitation. We also de-
velop new empirical diagnostics for choosing model components of the spatial conditional extremes
model, and we use these for proposing new parametric functions for the model components, which
allow for better data utilisation through a lower threshold. The remainder of the paper is organised
as follows: The weather radar data are presented in Section 2. Then, Section 3 describes our general
framework for modelling spatial extreme precipitation, and in Section 4, we apply our framework for
modelling and simulating extreme precipitation using the chosen radar data. The paper concludes
with a final discussion in Section 5.

2 Data

The Rissa radar is located in the Fosen region in Central Norway. It scans the surrounding area
multiple times each hour by sending out radio waves and measuring how much is reflected back.
The Norwegian Meteorological Institute processes the observed reflectivity data and uses them to
create gridded 1 × 1 km2 resolution maps of estimated hourly precipitation, measured in mm/h
(Elo, 2012). These precipitation maps are freely available, dating back to 1 January 2010, from an
online weather data archive (https://thredds.met.no).

We use the radar precipitation maps for modelling and simulating extreme hourly precipitation
over the Stordalselva catchment, located close to the Rissa radar. To achieve this, we download
all data for 2010–2022 inside a spatial domain S of size 91 × 71 = 6461 km2, centred around
the Stordalselva catchment. Figure 1 displays the domain S and the locations of the Rissa radar
and the Stordalselva catchment. The spatial conditional extremes model allows one to model and
simulate extremes occurring at any site of interest, by conditioning on that site experiencing ex-
treme behaviour (see Section 3 for more details). For the sake of illustration, we choose five such
conditioning sites, somewhat equally spaced throughout the water catchment, for modelling and
simulating extreme precipitation in Section 4. These sites are also displayed in Figure 1. There are
considerable differences between extreme summer precipitation and extreme winter precipitation in
Norway (Dyrrdal et al., 2015), and we therefore choose to only model summer precipitation from
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June, July and August, which is when most of the intense precipitation events occur in Norway.
There are some distortions in the data close to the Rissa radar, so we remove all observations from
locations that are within 5 km from the radar.

It can be difficult to distinguish between little and no precipitation using reflectivity data, and
the estimated precipitation data contain both exact zeros and values with magnitudes as small as
10−5 mm/h. In the Supplementary Material (Vandeskog et al., 2023), we show that there are large
differences in the proportions of exact zeros for different times, due to an upgrade of the weather
radar in 2018, but that the proportion of observations smaller than 0.1 mm/h is approximately
constant in time. We therefore round every observation smaller than 0.1 mm/h down to zero.

3 Model framework

3.1 Model overview

We model the spatial extremal dependence structure of the hourly precipitation process, Xt(s),
at location s ∈ S ⊂ R2 and time t ∈ T ⊂ N, using the spatial conditional extremes model
(Wadsworth & Tawn, 2022). The model describes the conditional distribution of Xt(s) given that
Xt(s0) > τt(s0), where s0 is some chosen conditioning site and τt(s) is a large threshold that may
vary in space and time. The conditioning site can be located anywhere in S, which makes us free
to place s0 at a specific location of interest, for modelling and simulating only the extremes that
we care about.

To use the spatial conditional extremes model, we must first transform Xt(s) into a standardised
process X̃t(s), with Laplace marginal distributions at all locations and time points in S × T , using
the probability integral transform X̃t(s) = F−1[Fs,t(Xt(s))], where F−1 is the quantile function
of the Laplace distribution and Fs,t is the cumulative distribution function of Xt(s) (Keef et al.,
2013). However, the marginal distribution of hourly precipitation contains a point mass at zero,
which means that the marginal distribution of X̃t(s) also contains a point mass, making it different
from the Laplace distribution in its lower tail. Richards et al. (2022, 2023) tackle this problem by
left-censoring all zeros. This yields promising results, but the censoring makes high-dimensional
inference computationally intractable without the use of low-dimensional composite likelihoods.
Moreover, this approach is still computationally demanding as it relies on evaluating bivariate
Gaussian distributions many times. We therefore propose another approach for modelling Xt(s)
with the spatial conditional extremes model. Assume that hourly precipitation can be represented
as Xt(s) = X+

t (s)It(s), where X+
t (s) = [Xt(s) | Xt(s) > 0] represents precipitation intensity and

It(s) is a binary random process that equals 1 when Xt(s) > 0 and 0 when Xt(s) = 0. So-called
Richardson-type stochastic weather generators depend on this formulation by first simulating the
precipitation occurrence It(s) and then simulating the precipitation intensity X+

t (s) if It(s) = 1
(Richardson, 1981). We build upon this approach by, instead of modelling [Xt(s) | Xt(s) > τt(s)],
performing separate modelling of the conditional intensity process [X+

t (s) | Xt(s) > τt(s)] and the
conditional occurrence process [It(s) | Xt(s) > τt(s)], and then setting

[Xt(s) | Xt(s) > τt(s)] =
[
X+

t (s)It(s) | Xt(s) > τt(s)
]
. (1)

The marginal distribution F+
s,t, of X+

t (s), does not contain a point mass, so it can more easily
be transformed into the Laplace distribution. Thus, we describe the conditional intensity process
with the spatial conditional extremes model, while the conditional occurrence process is described
with a suitable binary model. Our model for F+

s,t is described in Section 3.3. Then, our model
for the conditional intensity process is described is Section 3.4, and our model for the conditional

6



occurrence process is described in Section 3.5. Most of our models fall within the framework of
latent Gaussian models, which are introduced in Section 3.2.

3.2 Latent Gaussian Models

A latent Gaussian model is a model where the observations y = (y1, y2, . . . , yn)
⊤ are assumed to be

conditionally independent given a latent Gaussian random field x = (x1, x2, . . . , xm)⊤ and a set of
hyperparameters θ1, namely

[y | x,θ1] ∼
n∏

i=1

π(yi | ηi(x),θ1), [x | θ2] ∼ N (µ(θ2),Q
−1(θ2)),

where the likelihood
∏n

i=1 π(yi | ηi(x),θ1) is a parametric distribution with parameters ηi(x) and
θ1, the linear predictor ηi(x) is a linear combination of the elements in x and the latent field x is
conditionally Gaussian with mean vector µ and precision matrix Q, given the hyperparameters θ2.
The prior distributions of θ1 and θ2 are π(θ1) and π(θ2), respectively.

The latent Gaussian modelling framework is highly flexible, as the likelihood can stem from an
essentially arbitrary parametric distribution, while information from explanatory variables and a
large variety of dependency structures can be incorporated into the linear predictor ηi(x). Addi-
tionally, non-Gaussian structures can be incorporated into the model through the likelihood and the
hyperparameters θ1 and θ2, which can be given any kind of prior distributions. Another advantage
of the latent Gaussian model framework is that it allows for fast approximate inference using INLA,
which is implemented in the R-INLA package (van Niekerk et al., 2021, 2023). The package con-
tains a large range of pre-implemented model components for the linear predictor, including splines,
AR-models, random walk models and the so-called stochastic partial differential equation (SPDE)
model of Lindgren et al. (2011), which produces sparse approximations of Gaussian random fields
with Matérn autocorrelation function

γ(d) =
1

2ν−1Γ(ν)
(κd)νKν(κd), (2)

where d is the distance between two locations, ν > 0 is the smoothness parameter, ρ =
√
8ν/κ is

the range parameter and Kν is the modified Bessel function of the second kind and order ν. Thus,
R-INLA and the latent Gaussian model framework make it easy to quickly develop and perform
inference with complex models for a large variety of applications.

3.3 Modelling the marginals

We model marginal distributions of the intensity process X+
t (s) by first modelling the bulk of the

data with the gamma distribution, and then the upper tail with the GP distribution. Specifically,
we model margins as

F+
s,t(x) =

{
Gs,t(x) x ⩽ ut(s),

Gs,t(ut(s)) + (1−Gs,t(ut(s)))Hs,t(x− ut(s)) x > ut(s),
(3)

where Gs,t and Hs,t are cumulative distribution functions of the gamma and GP distributions
respectively, both with parameters that might vary in space and time, while ut(s) is the pu-quantile
of Gs,t, for some large probability pu. This “split-modelling” approach is a common choice for
modelling precipitation when aiming to describe both the bulk and the upper tail of the distribution
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(e.g., Opitz et al., 2018). We use the gamma and GP parametrisations of Castro-Camilo et al. (2019),
which give a probability density function for the gamma distribution on the form

g(x) =
xκ−1

Γ(κ)

(
G−1(α;κ, 1)

ψα

)κ

exp

(
G−1(α;κ, 1)

ψα

)
, x > 0, κ, ψα > 0

where κ is the standard shape parameter, α is a fixed probability, G−1(α;κ, 1) is the α-quantile
of a gamma distribution with shape κ and scale 1, and ψα is the α-quantile of the gamma distri-
bution. Using this parametrisation for the likelihood of our latent Gaussian model lets us directly
estimate the α-quantile of the data through the parameter ψα. The GP distribution has cumulative
distribution function

H(x) =

1−
(
1 +

{
(1− β)−ξ − 1

}
x
ϕβ

)−1/ξ

+
, ξ ̸= 0,

1− (1− β)x/ϕβ , ξ = 0,
ϕβ > 0, ξ ∈ R,

with (a)+ = max(0, a), where ξ is the tail parameter of the GP distribution, β is a fixed proba-
bility and the parameter ϕβ equals the β-quantile of the GP distribution. The support of the GP
distribution is (0,∞) for ξ ⩾ 0, while it is

(
0, ϕβ

{
1− (1− β)−ξ

})
for ξ < 0.

We estimate the parameters of Gs,t and Hs,t separately, with two different latent Gaussian
models. For the parameters of Gs,t, we use a latent Gaussian model with a gamma likelihood,
where the shape parameter κ is a hyperparameter that is constant in space and time, while ψα is
allowed to vary in space and time through the linear predictor η = logψα. Setting α = pu lets us
directly estimate the threshold ut(s), while estimating the parameters of Gs,t. The value of pu, the
components of η and the priors for θ vary depending on the application, and are therefore described
in Section 4.1. After having performed inference with R-INLA, we estimate the parameters of Gs,t

as the posteriors means of κ and ψα.
Having estimated the threshold ut(s), we then model the distribution Hs,t of the threshold

exceedances [X+
t (s) − ut(s) | X+

t (s) > ut(s)] with the GP distribution. Here, we apply a latent
Gaussian model with a GP likelihood, where the tail parameter ξ is a hyperparameter that is
constant in space and time, while the linear predictor is η = log ϕβ , where we set β = 0.5, so that
ϕβ is the GP median. Once more, the parameters of Hs,t are estimated as the posterior means of ξ
and ϕβ . Note that the GP likelihood within R-INLA only allows for modelling ξ > 0. However, this
should not be too problematic when modelling hourly precipitation data, as there is considerable
evidence in the literature that precipitation is heavy-tailed, and thus it should be modelled with a
non-negative tail parameter, especially for short temporal aggregation times (Cooley et al., 2007;
Huser & Davison, 2014; Papalexiou & Koutsoyiannis, 2013; Van de Vyver, 2012).

3.4 Spatial modelling of the conditional intensity process

We transform the precipitation intensities X+
t (s) into the standardised process Yt(s), with Laplace

marginal distributions, using the probability integral transform, Yt(s) = F−1[F+
s,t(X

+
t (s))]. Given

a conditioning site s0 and a threshold τt(s0), we then model the spatial distribution of Yt(s) given
that Xt(s0) > τt(s0), which is the same conditioning event as Yt(s0) > F−1[F+

s0,t
(τt(s0))]. We

assume that the notion of “extremes” can vary across time and space on the original precipitation
scale, but not on the transformed Laplace scale. We therefore set τt(s0) equal to a chosen quantile
of F+

s0,t
, which gives the constant threshold τ = F−1[F+

s0,t
(τt(s0))] on the Laplace scale. The

spatial conditional extremes model of Simpson et al. (2020) now states that, for τ large enough, the
conditional process [Yt(s) | Yt(s0) = y0 > τ ] is Gaussian,

[Yt(s) | Yt(s0) = y0 > τ ]
d
= a(s; s0, y0) + b(s; s0, y0)Zt(s; s0) + εt(s; s0), (4)
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where a(·) and b(·) are two standardising functions, Zt(s; s0) is a spatial Gaussian random field
with Zt(s0; s0) = 0 almost surely, and εt(s; s0) is Gaussian white noise with εt(s0; s0) = 0 almost
surely. This is the same as a latent Gaussian model with a Gaussian likelihood and latent field
a(·)+ b(·)Z(·), which means that computationally efficient approximate inference can be performed
using INLA. Simpson et al. (2020) demonstrate how to perform efficient high-dimensional inference
by using R-INLA and modelling Zt(s; s0) with the SPDE approximation. Vandeskog, Martino, and
Huser (2022) build upon their work and develop a methodology for implementing computationally
efficient parametric models for a(s; s0) and b(s; s0) in R-INLA and a method for efficient constraining
of Zt(s; s0) such that Zt(s0; s0) = 0 almost surely. We apply their methodology for modelling the
spatial distribution of conditional precipitation extremes, while developing new diagnostics and
models for the standardising functions a(·) and b(·).

3.5 Spatial modelling of the conditional occurrence process

Four competing models are applied to describe the spatial distribution of conditional precipita-
tion occurrences, [It(s) | Xt(s0) > τt(s0)]. One of these is the relatively common spatial probit
model, which assumes that It(s) depends on an underlying latent Gaussian process Zt(s) such that
It(s) = 1 when Zt(s) + εt(s) ⩾ 0 and It(s) = 0 otherwise, where εt(s) is zero-mean Gaussian white
noise. Thus, the process It(s) is conditionally independent given Zt(s), with success probability
P [It(s) = 1 | Zt(s)] = Φ(Zt(s)/σ), where Φ(·) is the cumulative distribution function of the stan-
dard normal distribution and σ2 is the variance of εt(s). This means that the probit model is in fact
a latent Gaussian model with a Bernoulli likelihood, and that we can perform fast inference using
INLA. Within R-INLA, we decompose Zt(s) into Zt(s) = µ(s)+Z∗

t (s), where Z∗
t (s) is a zero-mean

Gaussian random field, and µ(s) describes the mean of Zt(s). For faster inference, we model Z∗
t (s)

with the SPDE approximation. Assuming stationarity, we enforce It(s0) = 1 by modelling µ(s)
as a function of the distance d between s and s0, i.e., µ(d) ≡ µ(s) with d = ∥s − s0∥. Then we
ensure that µ(0) is positive and large, while also enforcing that Z∗

t (s0) = 0 almost surely, using
the constraining method of Vandeskog, Martino, and Huser (2022). This does not guarantee that
P(It(s0) = 1) = 1 exactly, but if µ(0) is large enough, then P(It(s0) = 1) ≈ 1 for most practical
purposes. The exact structure of µ(s) varies depending on the application in question.

The spatial probit model can produce realistic realisations of the spatial binary process, but it
can also struggle in situations where the binary field is smooth, in the sense that the variance of
εt(s) is considerably smaller than the variance of Zt(s). To ensure smooth model realisations, the
variance of Zt(s)/σ must become so large that the probability Φ(Zt(s)/σ) always is close to either
0 or 1, and this large variance can make it difficult to reliably estimate trends in the mean µ(s).
For this reason, we also attempt to model the conditional occurrence process using a probit model
without any spatial effects, i.e., where we remove Z∗

t (s). This model typically fails at providing
realistic-looking realisations of smooth binary processes, but it can perform considerably better at
capturing trends in the mean structure.

Our probit models are independent of the conditional intensity model, so it is possible for the
simulated occurrence samples to create highly non-smooth precipitation realisations where areas
with large precipitation values suddenly contain a “hole” of zeros close to the most extreme ob-
servations. This is an unrealistic behaviour that we wish to avoid. Our third modelling strategy
is therefore based on the assumption that the occurrence process is dependent upon the intensity
process such that only the smallest values of X+

t (s) gets turned into zeros. Thus, the third ap-
proach, denoted the threshold model, estimates the overall probability p of observing zeros in the
data, and then set It(s) equal to zero whenever X∗

t (s) is smaller than its estimated p-quantile.
Lastly, for improved base-line comparisons, we add a fourth occurrence model, which interprets “no
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Figure 2: Estimators for the 95%-quantile of hourly precipitation intensity (A) and the median of precip-
itation threshold exceedances (B) for each summer day during 2010–2022. In black: empirical estimators
created using a sliding window of width of one week. In red: posterior means estimated using the latent
Gaussian models with a gamma likelihood (A) and a GP likelihood (B).

precipitation” as a tiny but positive amount of precipitation, i.e., It(s) ≡ 1. We denote this the
nonzero model.

4 Simulating extreme hourly precipitation

We apply the models from Section 3 to the data from Section 2 for modelling and simulating spatial
realisations of extreme hourly precipitation. In Section 4.1 we model and standardise the marginal
distributions of the data. Then, in Section 4.2 and Section 4.3, we model the conditional intensities
and occurrences of extreme precipitation, respectively. Finally, in Section 4.4, we combine all the
model fits for simulating spatial realisations of extreme hourly precipitation.

4.1 Modelling the marginals

We model the marginal distribution F+
s,t of nonzero precipitation using the gamma-GP split-model

from Section 3.3, where we choose α = pu = 0.95. We attempt to model the linear predictor using
a separable space-time model where the spatial effect is modelled with a spatial Gaussian random
field, described using the SPDE approximation, and the temporal effect is modelled with a Gaussian
smoothing spline, also described using the SPDE approximation. However, we find that the spatial
effect is estimated to be almost constant, and that a purely temporal model using only the Gaussian
smoothing spline performs better. We therefore decide to use the purely temporal model, where
the linear predictor is equal to a temporal Gaussian smoothing spline. A model based on splines is
unsuitable for prediction outside the observed spatio-temporal domain, but the aim of this paper is
modelling, and not forecasting, so we find it to be a good model choice.

We place the weakly informative penalised complexity (PC) prior (Simpson et al., 2017) of
Fuglstad et al. (2019) on the range ρ =

√
8ν/κ and variance σ2 such that the prior probability that
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ρ exceeds 28 days is 5% and the prior probability that σ exceeds a value of 3 is 5%. The smoothness
parameter ν can be difficult to estimate (Lindgren & Rue, 2015), so we fix it to ν = 1.5. Due to
the large amounts of data, we speed up inference by only using observations from a spatial subgrid
of the data with resolution 2× 2 km2.

Inference is performed with R-INLA, in approximately half an hour, when using only one core on
a 2.6 gHz Linux server. The posterior mean of the shape parameter κ equals 0.69, and the posterior
mean of the threshold ut(s) is displayed in Subplot A of Figure 2, together with the empirical
95%-quantiles of the precipitation intensities, pooled across space. The smoothing spline seems to
capture the temporal trends of the data well. We evaluate the model fit using quantile-quantile (QQ)
plots. These are displayed in the Supplementary Material (Vandeskog et al., 2023), and they show
an almost perfect correspondence between model quantiles and empirical quantiles. We conclude
that the model fit is satisfactory.

Having estimated ut(s), we then model the threshold exceedances [X+
t (s) − ut(s) | X+

t (s) >
ut(s)] with the GP distribution, as described in Section 3.3. Once more, we find that a purely
temporal model for the linear predictor performs better than a separable space-time model. We
therefore model the linear predictor using a similar spline model as in the gamma model, with the
same prior distributions. The tail parameter ξ is given the PC prior of Opitz et al. (2018),

π(ξ) = λ(1− ξ/2)(1− ξ)−3/22−1/2 exp
(
−λξ/

√
2(1− ξ)

)
, 0 ⩽ ξ < 1,

with penalty parameter λ. The GP distribution has infinite mean for ξ ⩾ 1 and infinite variance
for ξ ⩾ 1/2, and since it is well established in the literature that ξ tends to be in the range between
0.05 and 0.3 for precipitation data (e.g., Cooley et al., 2007; Papalexiou & Koutsoyiannis, 2013;
Van de Vyver, 2012), we enforce ξ ⩽ 1/2 to ease parameter estimation. Then, we choose λ = 7,
which gives the prior probability P(ξ ⩽ 0.4) ≈ 95%.

Inference is performed with R-INLA, using all the spatial locations, in approximately 2 minutes.
The posterior mean of ξ is 0.145, which is far away from the upper bound of 1/2, and corresponds
well with the results of Vandeskog, Martino, Castro-Camilo, and Rue (2022), who estimated ξ = 0.18
with a 95% credible interval of (0.14, 0.21) when modelling the yearly maxima of hourly precipitation
using rain gauge data from a spatial domain that covers S. Subplot B of Figure 2 displays the
empirical median of the threshold exceedances, pooled in space, along with the posterior means
of the threshold exceedance medians, which seem to agree well with the main temporal trends of
the data. We evaluate the model fit using QQ plots, displayed in the Supplementary Material
(Vandeskog et al., 2023). These demonstrate a good correspondence between model quantiles and
empirical quantiles. We once more conclude that our model provides a satisfactory fit to the data.

4.2 Modelling the conditional intensity process

We standardise the precipitation intensities to have Laplace marginal distributions. Then, following
Keef et al. (2013), we choose the functions a(s; s0, y0) = α(s; s0)y0 and b(s; s0, y0) = y

β(s;s0)
0 for the

spatial conditional extremes model (4), which, they claim, can cover a large range of dependence
structures, including all the standard copulas studied by Joe (1997) and Nelsen (2006). Building
upon the work of Vandeskog, Martino, and Huser (2022), we develop new empirical diagnostics for
making informed decisions about the value of the threshold τ and the forms of α(s; s0) and β(s; s0).

We assume that the standardising functions only depend on the Euclidean distance to s0 and
define α(d) ≡ α(s; s0) with d = ∥s − s0∥, and similarly for β(d). Assuming that the residual field
Zt(s; s0) is isotropic, we denote the mean and variance of [Yt(s) | Yt(s0) = y0] as µ(d; y0) and
ζ(d; y0)

2, respectively. Under the spatial conditional extremes model (4), these equal µ(d; y0) =
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Figure 3: A) Empirical moments and estimators for χ(d; y0) and components of the conditional extremes
model (4). B) Posterior means of the same variables from the model fit based on conditioning site nr. 2.

α(d)y0 and ζ(d; y0)
2 = σ(d)2y

2β(d)
0 + σ2ε , where σ2ε is the variance of the nugget term εt(s; s0) and

σ(d)2 is the variance of Zt(s; s0) when ∥s − s0∥ = d. By computing the empirical mean, µ̂(d; y0),
of the conditional precipitation intensity, we can estimate α(d) as α̂(d; y0) = µ̂(d; y0)/y0. Similarly,
by assuming that σε is small, we can estimate β(d) using empirical conditional variances as

β̂(d; y0, y1) = log{ζ̂(d; y0)/ζ̂(d; y1)}/ log(y0/y1),

where ζ̂(d; y) is the empirical standard deviance of all observations with distance d to a conditioning
site with threshold exceedance y, and y0 ̸= y1 are any two threshold exceedances y0, y1 > τ .
This allows us to create multiple different estimators α̂(d; y0) and β̂(d; y0, y1) for α(d) and β(d),
respectively, by varying the values of y0 and y1. This provides a diagnostic for estimating the
threshold τ , since the spatial conditional extremes model assumes that α(d) and β(d) are constant
for all threshold exceedances larger than τ . Thus, we compute α̂(d; y0) and β̂(d; y0, y1) for a large
range of values of y0 and y1, and we set τ equal to the smallest value such that the estimators are
approximately constant for all y0, y1 > τ . Then, we propose parametric functions for α(d) and β(d)
that can fit well to the patterns that we find in the empirical estimators. Finally, we also compute
σ̂(d; y0, y1) = ζ̂(d; y0)y

−β̂(d;y0,y1)
0 to get an idea about the marginal variances of the residual process

Z(s; s0).
Exploratory analysis hints at some weak anisotropy in the precipitation data. However, we do

not believe the lack of isotropy is strong enough to cause considerable problems, and the development
of a suitable anisotropic model is outside the scope of this paper. We therefore assume an isotropic
model. We compute µ̂(d; y0) and ζ̂(d; y0) with a sliding window approach. For any value of d
and y0, the moments are estimated using all observations within a distance d ± 0.5 km from a
location where a value of log(y0) ± 0.025 is observed. We then compute α̂(d; y0), β̂(d; y0, y1) and
σ̂(d; y0, y1) as previously described, where we fix y1 to the 90%-quantile of the Laplace distribution.
We also estimate empirical conditional exceedance probabilities χ(d; y0) ≡ χp(s, s0), where d =
∥s − s0∥ and p = F−1(y0) with F−1 the quantile function of the Laplace distribution, using a
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similar sliding window approach. All the estimators are displayed in subplot A of Figure 3. The
estimated shape of σ(d) corresponds well with the standard deviation of a random field with constant
variance, constrained to be zero at s0. The estimators for α(d) seem to behave like functions with
exponential-like decay towards zero as d increases. However, the decay occurs at an increasing rate
as y0 increases, and it never seems to stabilise as a function of y0. This indicates that, with the
available amounts of data, we cannot choose a large enough threshold τ such that the function
a(d; y0) = α(d)y0 provides a good fit for all y0 > τ . Therefore, we instead propose to model the
mean as a(d; y0) = α(d; y0)y0, where the function α(·) depends on both distance d and intensity
level y0, and we choose a relatively low threshold, τ = y1.

A common model for α(d) is α(d) = exp{−(d/λa)
κa}, with λa, κa > 0, see, e.g, Wadsworth and

Tawn (2022), Richards et al. (2022) and Simpson and Wadsworth (2021). We therefore examine
if the model α(d; y0) = exp[−{d/λa(y0)}κa(y0)] can provide a good fit to our data, where λa(y0)
and κa(y0) are parametric functions of y0. Using a sliding window approach, we estimate λa(y0)
and κa(y0) by minimising the sum of squared errors between [Y (s) | Y (s0) = y0] and a(∥s −
s0∥; y0) for different values of y0. These least squares estimators are displayed in the Supplementary
Material (Vandeskog et al., 2023). Based on our findings we propose to model λa(y0) as λa(y0) =
λa0 exp(−(y0 − τ)/Λλ), with λa0,Λλ > 0, and κa(y0) as κa(y0) = κa0 exp(−((y0 − τ)/Λκ)

κ), with
κa0,Λκ,κ > 0.

The estimators for β(d) in subplot A of Figure 3 have a clear dependence on y0 at short distances
d. However, β̂(d; y0, y1) seems to be independent of y0 for longer distances, and the changes as a
function of y0 are much less severe than those in α̂(d; y0). We therefore stick to a model on the form
b(d; y0) = y

β(d)
0 . Based on the estimators in subplot A of Figure 3, it seems that β(d) should be

modelled with a function that decays exponentially towards zero. We therefore choose the model
β(d) = β0 exp(−(d/λb)

κb) with λb, κb > 0 and β0 ∈ [0, 1).
Having chosen the threshold τ and parametric forms for the functions a(d; y0) and b(d; y0),

we then apply the method of Vandeskog, Martino, and Huser (2022) for defining a nonstationary
and constrained SPDE approximation to the spatial Gaussian random field in (4) within R-INLA.
This SPDE model approximates spatial Gaussian random fields on the form b(s; ·)Z(s) as a linear
combination of m Gaussian mesh nodes, Ẑb(s) =

∑m
i=1 ϕi(s)biWi, where b1, b2, . . . , bm are the values

of the function b(s) at the location of the m mesh nodes, and ϕi and Wi are basis functions and
Gaussian mesh nodes from the “standard” SPDE approximation, Ẑ(s) =

∑m
i=1 ϕi(s)Wi, of Lindgren

et al. (2011). The nonstationary SPDE approximation is then constrained at s0 by placing one of
the mesh nodes at s0, and constraining it to be exactly zero.

For each of the five chosen conditioning sites, we perform inference with R-INLA, using data from
all time points where τ is exceeded at s0 and all 6404 locations in S. In an empirical Bayes like
approach, we place Gaussian priors on the logarithms of the parameters in a(·), with variance 52 and
means equal to their least squares estimators. For the parameters of b(·), we choose Gaussian priors
with variance 52 for log(λb), log(κb) and log(β0/(1− β0)), which ensures λb, κb > 0 and β0 ∈ (0, 1).
The prior means are chosen based on the diagnostics in Figure 3. We set them equal to log(8.5),
log(0.5) and log(0.65/(1 − 0.65)), respectively. The parameters of Zt(s) are given the PC prior of
Fuglstad et al. (2019), such that the prior probability that the range ρ exceeds 60 km is 5% and the
prior probability that the standard deviation σ exceeds 4 is 5%. We fix the smoothness parameter
to ν = 0.5, to represent our belief about the smoothness properties of extreme precipitation fields.

Inference with R-INLA is performed within 1–4 hours for each conditioning site, using only one
core on the same Linux server as before. We evaluate the five model fits by estimating posterior
means of the same variables as in subplot A of Figure 3, using 1000 posterior samples of θ. Subplot
B displays these posterior means from the model fit based on conditioning site nr. 2. Although there
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are some differences between subplot A and B, the patterns of the estimated curves are in general
agreement, indicating a satisfactory model fit overall. The posterior mean of µ(d; y0) is similar
to that of the data, with some slight underestimation for large values of d and y0. The standard
deviation ζ(d; y0) is slightly underestimated for small d, and overestimated for large d. For the
values of χ(d; y0), which we care the most about, this results in a weak underestimation for small
d and large y0, and overestimation for large d and small y0. We believe that more complex models
for a(·) and b(·), e.g., with β(·) being a function of y0 at small d, would be able to further reduce
the differences seen in Figure 3. However, for the scope of this paper, we deem that the current fit
is good enough. We also believe that the combination of minor overestimation and underestimation
of χ(·) might somewhat cancel each other out. Estimators based on all five model fits are displayed
in the Supplementary Material (Vandeskog et al., 2023), and they all seem to capture the major
trends of the data.

4.3 Modelling the conditional occurrence process

To model conditional precipitation occurrences, we first search for patterns in the observed data.
Since we model [It(s) | Y (s0) > τ ], we expect the occurrence probability to be higher as we move
closer to s0. We therefore compute empirical occurrence probabilities p̂(d) at different distances d
from s0, using a sliding window of width 1 km. These are displayed by the black line in subplot
B of Figure 4. As expected, p̂(d) decreases as d increases, with an almost linear decline. Subplot
A of Figure 4 displays six realisations of the precipitation data. The distribution of precipitation
occurrence appears to be smooth in space, in the sense that zeros cluster together. Thus, the non-
spatial probit model is unable to produce realistic looking simulations. The precipitation intensities
also appear to be smooth in space, in the sense that we never observe big jumps in the precipitation
values, and that zeros only occur next to other zeros or small precipitation values. To check if this
is true for all the available data, we estimate the probability p(ȳ) of observing precipitation as a
function of the mean observed precipitation ȳ at the four closest spatial locations. The empirical
estimator is displayed using the black line in subplot C of Figure 4. It seems that the probability
of observing precipitation is close to zero if ȳ = 0, and that it increases as a function of ȳ, and is
almost exactly 1 if ȳ > 0.2 mm/h. This implies that our probit models might produce unrealistic
simulations, as they are independent of the intensity model and might produce zeros close to large
precipitation values.

Based on the exploratory analysis, we model the mean µ(d), of the two probit models, using
a spline. More specifically, we model ∂µ(d)/∂d as a spline function based on 0-degree B-splines,
where we place Gaussian zero-mean priors with a standard deviation of 10 on all spline coefficients.
Additionally, in the spatial probit model, we place PC priors on the SPDE parameters (Fuglstad
et al., 2019) such that the prior probability that the range parameter ρ exceeds 70 km is 5% and the
prior probability that the standard deviation of Z∗

t (s) exceeds 5 is 1%. The smoothness parameter
is fixed to ν = 0.5. We then perform inference separately for each of the five chosen conditioning
sites and the two probit models. Inference with R-INLA takes between 10–15 minutes for the spatial
probit models, and 2–3 minutes for the non-spatial probit models. For the threshold model, we
estimate the threshold by computing the empirical probabilities of observing precipitation inside
the Stordalselva catchment given extremes at each of the five conditioning sites.

We evaluate model performance by comparing properties of observed and simulated data. The
threshold model depends on the intensity process, so we first simulate conditional intensities, by
sampling θ from its posterior distribution and then sampling both [Yt(s0) | Yt(s0) > τ ] and {Yt(s) |
Yt(s0),θ : s ∈ S} using (4). Then, we “simulate” occurrences with the threshold model by rounding
all small enough precipitation intensities down to zero. Figure 4 displays empirical estimates for
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Observations
Spatial probit
Probit
Threshold
Nonzero

C)

Figure 4: A) Visualisation of observed precipitation for six time points where a threshold exceedance is
observed at conditioning site nr. 4 (marked by a red dot). Grey denotes zero precipitation, while white
denotes observations close to the Rissa radar that have been removed. The rightmost plots display empirical
estimates for p(d) (B) and p(ȳ) (C), created using both observed data and simulated data from the four
different occurrence models.

the probability of observing precipitation as a function of the distance d to s0 and as a function of
the mean ȳ of the four nearest neighbours, for observed and simulated precipitation data. Clearly,
the nonzero model fails to capture the probability of precipitation occurrences. From subplot B we
find that the spatial probit model heavily underestimates the probability of observing precipitation
for most distances d. The threshold model performs better than the spatial probit model, but it
slightly underestimates p(d) for small d and overestimates it for large d. The non-spatial probit
simulations, however, seem to agree well with the observed data for all values of d. From subplot
C of Figure 4, we see that both probit models simulate zeros right next to large precipitation
observations, resulting in an underestimation of p(ȳ). The spatial probit model performs better
than the classical independent one, but it still does not completely solve this misfit. The threshold
occurrence simulations, however, seem to agree well with the observations by placing its zeros close
to other zeros or small precipitation values. Overall, the threshold model seems to be the best at
estimating occurrence probabilities. The classical probit model is considerably better at estimating
p(d), but it completely fails at estimating p(ȳ).

4.4 Simulating spatial precipitation extremes

We combine all of the fitted models to simulate extreme precipitation over the Stordalselva catch-
ment. For each of the five conditioning sites, extreme precipitation is simulated using Algorithm 1,
with N = 103 samples, where Exp(1) denotes the exponential distribution with unit scale, S1 ⊂ R2

denotes all locations where we simulate extreme precipitation, F̂−1
t denotes the estimated marginal

quantile function of positive hourly precipitation at time t, and F denotes the cumulative distri-
bution function of the Laplace distribution. Recall that T is the set of all time points in our
data.

Figure 5 displays observed and simulated realisations of extreme precipitation over the Stordal-
selva catchment. Simulations from the classical probit model and the nonzero model are not cap-
turing the spatial structure of precipitation occurrence in the observed data, while simulations from
the spatial probit model and the threshold model look more realistic. However, unlike the threshold
model simulations, many of the spatial probit simulations contain large precipitation intensities
right next to zeros, which is unrealistic.

As discussed in Section 1, both the amount of precipitation and its spatial distribution are
important features for assessing flood risk. Thus, to further evaluate the simulations, we com-
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Figure 5: Realisations of conditional extreme precipitation, from observed and simulated data. The red dots
display the locations of the chosen conditioning site for each subplot.
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Algorithm 1 Simulating spatial extreme precipitation with conditioning site s0.
Sample N time points t1, . . . , tN uniformly with replacement from T .
for i = 1, 2, . . . , N do

Sample a threshold exceedance [Yi(s0) | Yi(s0) > τ ] ∼ τ + Exp(1)
Sample a spatial realisation of the conditional intensity process {Yi(s) : s ∈ S1} | Yi(s0)
Sample a spatial realisation of the conditional occurrence process {Ii(s) : s ∈ S1} | Yi(s0)
Transform back to the precipitation scale: X+

i (s) = F̂−1
ti

[F (Yi(s))]
Add zeros to the samples: Xi(s) = X+

i (s)Ii(s)
end for
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Figure 6: Estimators of χp(d) for observed and simulated data, using conditioning site nr. 1.

pare conditional exceedance probabilities and precipitation sums over different areas between the
observed and simulated data. Estimators for χ̂p(d) are computed using the same sliding window
approach as in Section 4.2. Figure 6 displays the estimators from conditioning site nr. 1. The
simulations seem to capture χp(d) well, even though, just as in Section 4.2, χp(d) is somewhat
underestimated for small d and overestimated for large d. The probit models seem to overestimate
χp(d) less than the non-probit models at large distances, which makes sense, because the models
are independent of the intensity process and thus can set large intensity values equal to zero. The
estimators for χp(d) seem almost identical for the threshold model simulations and the nonzero
model simulations. This also makes sense, since the small values that are rounded down to zero by
the threshold model are too small to considerably affect the values of χp(d). Similar patterns are
found for the other four conditioning sites. Estimators for χp(d) from all five conditioning sites are
displayed in the Supplementary Material (Vandeskog et al., 2023). They all display similar patterns.

We also compare aggregated simulated and observed precipitation amounts over the Stordalselva
catchment to evaluate the simulations. For each conditioning site, we compute precipitation sums
inside Bd(s0) ∩ S1, where Bd(s0) is a ball of radius d km, centred at s0, and S1 denotes the
catchment of interest. We then compare observed and simulated precipitation sums using QQ plots.
Figure 7 display these plots for conditioning site nr. 4. For small d, all the simulations produce
similar precipitation amounts, which are close to the observed data, although slightly smaller. As
d increases, the underestimation increases somewhat for the probit models, while it decreases for
the non-probit models, which seem to agree well with the observed data. Quantiles of the threshold
model and the nonzero model are almost identical and can be hard to distinguish. QQ plots for all
five conditioning sites are displayed in the Supplementary Material (Vandeskog et al., 2023). They
all display similar patterns.
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Figure 7: QQ plots for the sum of aggregated precipitation inside Bd(s0) ∩ S1, based on conditioning site
nr. 4. Quantiles from the four different simulated data sets are displayed using different colours.

5 Discussion and conclusion

We propose a framework for modelling and simulating high-dimensional spatial precipitation ex-
tremes, using the spatial conditional extremes model and latent Gaussian models. We model the
marginal distributions of nonzero precipitation using a mixture of two latent Gaussian models with
a gamma likelihood and a generalised Pareto (GP) likelihood, while separately modelling the ex-
tremal dependence of nonzero precipitation extremes with a spatial conditional extremes model
formulated as a latent Gaussian model. Precipitation occurrences are modelled using four different
competing binary models. Fast approximate inference is achieved using integrated nested Laplace
approximations (INLA). We develop new empirical diagnostics for the threshold and standardising
functions of the spatial conditional extremes model, and we use these to propose a new class of
parametric forms for the standardising functions. The developed framework is applied for simulat-
ing high-resolution precipitation extremes over a water catchment in Central Norway, and is found
to perform well.

The threshold occurrence model appears to outperform the other occurrence models, as it cap-
tures both spatial and marginal properties of the data well, whereas the two probit models fail to
capture either the marginal or the spatial properties. However, since the precipitation simulations
stem from a combination of intensity samples and occurrence samples, it is nontrivial to conclude
that one occurrence model significantly outperforms the others, as a change in the intensity model
might potentially cause another occurrence model to produce the best precipitation simulations.

Compared to the probit models, the threshold model lacks some flexibility in the sense that
it produces deterministic simulations given the intensity samples and a threshold. However, the
threshold model interacts with the intensity model, which the probit models are unable to. This
interaction is clearly crucial, as the threshold model ends up being our most successful. For future
work, it might prove fruitful to develop probit models that interact more with the intensity model. A
common approach for creating such interactions is to perform joint inference, where the two models
share some latent model components, similar to Bacro et al. (2020) and Gelfand (2021). This
might be challenging for the intensity and occurrence models, as their latent fields have different
interpretations and scales, but it might still be possible to create some meaningful link between the
two.

The spatial probit model underestimates occurrence probabilities almost everywhere in space.
We believe this happens because the spatial clustering of zeros and ones in the data forces the
nugget effect to be small, which, in the latent Gaussian model formulation, causes the latent field
to have a large enough variance to absorb most of the mean trend. The symmetry of the latent
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field thus makes all marginal probabilities tend towards 50%, meaning that it underestimates large
probabilities and overestimates small probabilities. One might fix this by removing the conditional
independence assumption, i.e., discarding the nugget effect. However, this makes inference with
INLA impossible. Alternatively, one might use an asymmetric latent random field, with a skewness
that varies in space, so that latent variables close to the conditioning site are right skewed, while
latent variables further away from the conditioning site are more left skewed. Cabral et al. (2022)
show that inference with INLA can be possible for non-Gaussian latent fields, meaning that R-INLA
might work with such a model. Future work should attempt to add changes in skewness to the
latent field of the spatial probit model.

As discussed in Section 1, radar data are great for capturing the small-scale spatio-temporal
variability of precipitation, but not many have used them for modelling extreme precipitation.
We show that the radar data let us capture small-scale extremal dependence structures with high
precision. However, it weather radars are known to struggle with capturing the exact precipitation
amounts, i.e., marginal distributions, well. This might negatively affect our estimates of aggregated
precipitation amounts. Thus, to create reliable simulations of extreme precipitation, future work
should attempt to combine information from multiple precipitation data sets, by, e.g., modelling
extremal dependence using high-density radar data, while modelling marginal distributions using
rain gauge observations, which are better at capturing the marginal distributions of precipitation,
but that are too sparse in space to provide successful estimates of the extremal dependence structure.

Our models assume isotropy, but the observed data in Figures 4 and 5 display some indications
of anisotropy. This does not seem to affect our results much, as the simulated data capture the
main trends of the observed data well. However, future work should attempt to add features of
anisotropy and/or nonstationarity into the model framework, which is possible within the SPDE
and R-INLA frameworks (Lindgren et al., 2023).

It is known that R-INLA can struggle to approximate the posterior distribution if given subopti-
mal initial values, or if some parameters are not well identifiable in practice. Our chosen model for
the conditional intensity process is highly flexible, and different combinations of the model parame-
ters may sometimes produce similar likelihood values. In practice, we have seen that small changes
in the model formulation or initial values can lead to large changes in the estimated parameters,
and care should therefore be taken when applying this methodology in other settings. However,
since these different parameters produce similar likelihood values, they all seem to perform equally
well, when considering the QQ plots and estimates of χp(d) in Section 4.4. We have never observed
a small change in model formulation or initial values that leads to a noticeably worse model fit
overall.

Parameters of the marginal precipitation distributions are estimated using latent Gaussian mod-
els with conditional independence assumptions given a relatively simple latent field. Such assump-
tions might fail to account for the complex spatio-temporal dependence structures of precipitation
data and might therefore produce too small uncertainty estimates, due to an overestimation of the
effective sample size. However, to the best of our knowledge, no computationally tractable methods
exist that can accounting well for such complex spatio-temporal dependence in such large and high-
dimensional data sets. Additionally, an underestimation of the uncertainty is not too problematic
when we only use point estimates of the parameters for modelling the marginal distributions. Also,
the reasonable parameter estimates displayed in Section 4.1 and the almost perfect QQ plots in
the Supplementary Material (Vandeskog et al., 2023) imply that our marginal models perform well,
even though they are based on oversimplified conditional independence assumption.

Similarly, the conditional intensity and occurrence models are purely spatial, and they assume
that observations from different time points are independent, which can lead to too small uncer-
tainty estimates. Future work should focus on the inclusion of a temporal component in all our
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models, to allow for better uncertainty quantification. Temporal components are also important
for creating reliable simulations for hydrological models, as this allows for descriptions of the du-
rations and movements of extreme precipitation events. We do not believe that this will entail too
much work, as extensions from space to space-time can be relatively simple to achieve within the
R-INLA framework. As an example, Simpson et al. (2020) successfully perform both spatial and
spatio-temporal modelling with the spatial conditional extremes model, and it should be possible
to extend most of their changes for space-time modelling into our developed framework.
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Supplementary material
S1 Data exploration

We compute the proportions of exact zeros in the precipitation data, pooled over space, for different
times. Figure S1.1 displays temporal distributions of the proportions of observations that are
less than or equal to a threshold τ0, for different values of τ0. The Rissa radar was upgraded in
2018 (personal communication, 2023), and this is clearly visible from the lower left subplot, as the
proportion of exact zeros changed considerably in that year. In order to remove these changing
zero-patterns, we post-process the data by rounding every observation smaller than 0.1 mm/h down
to zero, as this seems to give a somewhat equal proportion of zeros everywhere in space and time.
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Figure S1.1: The temporal distribution of the proportion of observations, pooled in space, that are less than
or equal to τ0 for June, July and August, respectively.

S2 Evaluation of fitted marginal distributions

We evaluate goodness of fit for the two marginal models by creating quantile-quantile (QQ) plots. It
is not straightforward to compare empirical quantiles with our model quantiles, as the models assume
that each day comes with a different distribution, and thus a different set of quantiles. To create
QQ plots for the gamma model, we therefore standardise the data by dividing each observation on
its estimated scale parameter. Then we compare empirical quantiles of the standardised data with
quantiles from a gamma distribution with a scale parameter of 1 and the estimated shape parameter.
The resulting QQ plots are displayed in the upper row of Figure S2.1. Similarly, to create QQ
plots for the generalised Pareto (GP) model, we standardise the observed threshold exceedances by
dividing on their estimated scale parameters, and then we compare empirical quantiles with those
of a GP distribution with a scale of 1 and the estimated tail parameter. The QQ plots are displayed
in the lower row of Figure S2.1. Both of the marginal models seem to perform well. The GP
model slightly underestimates the largest quantiles, but we here note that a value of 10 mm/h is so
large that it corresponds to the empirical 99.3% quantile of the standardised threshold exceedances,
which is approximately the same as the 99.97% quantile of the nonzero precipitation observations,
and approximately the same as the 1 − 5 × 10−5 quantile of the hourly summer precipitation
observations, which again is slightly more than the 9 year return level for summer precipitation
under the (unlikely) assumption that all observations are i.i.d.
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Figure S2.1: Upper row: QQ plots comparing empirical quantiles of the standardised observations with
quantiles of a gamma distribution with a scale of 1 and the estimated shape parameter. Lower row: QQ plots
comparing empirical quantiles of the standardised threshold exceedance observations with quantiles of a GP
distribution with a scale of 1 and the estimated tail parameter. The four columns display empirical quantiles
for June, July, August and for all the months together, respectively.

S3 Modelling the conditional intensity process

In the main paper, when modelling the conditional intensity process, we discover that the empirical
estimators α̂(d; y0) for α(d) seem to depend on y0 for all values of y0. We therefore propose to
model α(·) as a function α(d; y0) that depends on y0, and we propose the form

α(d; y0) = exp
[
−(d/λa(y0))

κa(y0)
]
,

where λa(y0), κa(y0) > 0 are parametric functions of y0.
Since the mean of our spatial conditional extremes model is a(d; y0) = y0α(d; y0), we can easily

estimate λa(y0) and κa(y0) for any fixed value of y0, by minimising the sum of squared errors between
[Y (s) | Y (s0) = y0] and a(∥s − s0∥; y0). Thus, using a sliding window estimator over y0, with a
window size of 0.2, we estimate λa(y0) and κa(y0) for a set of different threshold exceedances y0 > τ .
The estimators are displayed in the two leftmost plots of Figure S3.1. We see that the estimators
for λa(y0) seem to decay exponentially towards zero as y0 increases, while the estimators for κa(y0)
look more like they follow the density function of a half-Gaussian distribution. We therefore propose
the models

λa(y0) = λa0 exp(−(y0 − τ)/Λ), κa(y0) = κa0 exp(−((y0 − τ)/Λκ)
κ), (S3.1)

where the parameters λa0, Λ, κa0, Λκ and κ all are required to be positive.
We fit the models in (S3.1) to the data by once more minimising the sum of squared errors. The

resulting estimators for λa(y0) and κa(y0) are displayed as black lines in the two leftmost plots of
Figure S3.1, and the resulting estimators for α(d; y0) and a(d; y0) are displayed in the two rightmost
plots of Figure S3.1. The fitted functions seem similar to those displayed in subplot A of Figure 3 in

24



0.4

0.6

0.8
λ̂a(y0) κ̂a(y0)

3 6 9 3 6 9
0

10

20

30

40

y0

Va
lu

e

0.00

0.25

0.50

0.75

1.00
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Figure S3.1: Leftmost plots: Points displaying least squares estimators of λa(y0) and κa(y0), computed
using a sliding window over y0 with a width of 0.2. The black lines display the least squares estimators of
λa(y0) and κa(y0) under the model in (S3.1), computed without the sliding window approach, i.e., using all
possible threshold exceedances. Rightmost plots: The estimated functions for α(d; y0) and a(d; y0), created
using the least squares estimators of λa(y0) and κa(y0).

the main paper, and we therefore conclude that our chosen model for α(d; y0) provides an adequate
fit to the data.

Having performed inference with R-INLA for the conditional intensity process using each of the
five chosen conditioning sites, we evaluate model performance by simulating out-of-sample data
and computing empirical estimators for µ(d; y0), ζ(d; y0), α(d), β(d), σ(d) and χ(d; y0), just as in
Figure 3 in the main paper. Figure S4.1 displays these estimators for simulated data based on each
of the five conditioning sites. It also displays the estimators from subplot A in Figure 3 of the main
paper, which were computed “globally”, by using every single location S as a possible conditioning
site. The estimators for β(d) vary slightly between the different model fits, and this difference leads
to considerable changes in the standard deviation ζ(d; y0) of the model fits. These differences might
be caused by the fact that, as discussed in the main paper, our chosen model for β(d) is somewhat
simple, in that it does not account for the fact that the empirical estimators change as a function
of y0 for small values of d. Thus, for some model fits, β(d) is given a value that captures the sharp
spike of ζ̂(d; y0) that occurs at small d with large values of y0, while for other fits, β(d) is given a
value that better captures the more smooth values of ζ̂(d; y0) when y0 is small. We believe that a
more complex model for β(d), possibly that changes as a function of y0, would be able to capture
both of these characteristics better. As shown in Section S4, the model fits with both of the different
forms of β(d) perform well and produce simulated data that closely capture important properties
of the observed data such as its aggregated precipitation sums and extremal dependence structure.

S4 Evaluating the final precipitation simulations

We evaluate the precipitation simulations by computing conditional exceedance probability estima-
tors and by creating QQ plots for the sums of aggregated precipitation over different areas inside
the Stordalselva catchment. Figure S4.2 displays empirical estimators for χp(d) for both the ob-
served and the simulated data, using each of the five conditioning sites. The simulated estimators
correspond well to the observation estimators, overall. Yet, they tend to be smaller than those of
the observed data for large p and small d, and they tend to be larger than those of the observed data
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for small large d. This is further discussed in the main paper. Figure S4.3 display QQ plots for the
sum of precipitation inside a ball of radius d, centred at s0, for each of the five conditioning sites,
between the observed data and simulations from the four different model fits. The QQ plots show
that there is a good correspondence between observed and simulated data, but that the simulated
data tend to slightly underestimate aggregated precipitation amounts.
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Figure S4.1: Estimators for µ(d; y0), ζ(d; y0), α(d), β(d), σ(d) and χ(d; y0) for observed data and for
simulated data using the five chosen conditioning sites. The estimators are computed using the same sliding
window approach as in the main paper.
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Figure S4.2: Estimators of χp(d) for observed and simulated data, using all five conditioning sites.

27



0

100

200

300

O
bs

er
va

tio
n

qu
an

til
es

Conditioning site nr. 1 Conditioning site nr. 2 Conditioning site nr. 3 Conditioning site nr. 4 Conditioning site nr. 5

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Simulation quantiles

d = 5

0

250

500

750

1000

O
bs

er
va

tio
n

qu
an

til
es

Conditioning site nr. 1 Conditioning site nr. 2 Conditioning site nr. 3 Conditioning site nr. 4 Conditioning site nr. 5

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Simulation quantiles

d = 10

0

500

1000

1500

O
bs

er
va

tio
n

qu
an

til
es

Conditioning site nr. 1 Conditioning site nr. 2 Conditioning site nr. 3 Conditioning site nr. 4 Conditioning site nr. 5

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
Simulation quantiles

d = 15

0

500

1000

1500

2000

O
bs

er
va

tio
n

qu
an

til
es

Conditioning site nr. 1 Conditioning site nr. 2 Conditioning site nr. 3 Conditioning site nr. 4 Conditioning site nr. 5

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Simulation quantiles

d = 20

0

500

1000

1500

2000

2500

O
bs

er
va

tio
n

qu
an

til
es

Conditioning site nr. 1 Conditioning site nr. 2 Conditioning site nr. 3 Conditioning site nr. 4 Conditioning site nr. 5

0 500 1000150020002500 0 500 1000150020002500 0 500 1000150020002500 0 500 1000150020002500 0 500 1000150020002500
Simulation quantiles

d = ∞

Occurrence model
Spatial probit
Probit
Threshold
Nonzero

Figure S4.3: QQ plots for the sum of aggregated precipitation over the intersection of the Stordalselva
catchment and a ball of radius d, centred at s0, for each of the five conditioning sites. The four different
simulations are displayed using different colours.
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