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Abstract 

The initial inception of the landslide susceptibility concept defined it as a static property of the 

landscape, explaining the proneness of certain locations to generate slope failures. Since the spread 

of data-driven probabilistic solutions though, the original susceptibility definition has been 

challenged to incorporate dynamic elements that would lead the occurrence probability to change 

both in space and in time. This is the starting point of this work, which combines the traditional 

strengths of the susceptibility framework together with the strengths typical of landslide early 

warning systems. Specifically, we model landslide occurrences in the norther sector of Vietnam, using 

a multi-temporal landslide inventory recently released by NASA. A set of static (terrain) and dynamic 

(cumulated rainfall) covariates are selected to explain the landslide presence/absence distribution 

via a Bayesian version of a binomial Generalized Additive Models (GAM). Thanks to the large 

spatiotemporal domain under consideration, we include a large suite of cross-validation (CV) 

routines, testing the landslide prediction through random sampling, as well as through stratified 

spatial and temporal sampling. We even extend the model test towards regions far away from the 

study site, to be used as external validation datasets. The overall performance appears to be quite 

high, with Area Above the Curve (AUC) values in the range of excellent model results, and very few 

localized exceptions.  

This model structure may serve as the basis for a new generation of early warning systems. However, 

the use of The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) for the rainfall 

component limits the model ability in terms of future prediction. Therefore, we envision subsequent 

development to take this direction and move towards a unified dynamic landslide forecast. 

Ultimately, as a proof-of-concept, we have also implemented a potential early warning system in 

Google Earth Engine. 

 

1. Introduction 

The need to understand landslide dynamics comes from the disastrous impacts such events may 

generate, with average economic losses recorded up to 5 billion USD for susceptible countries such 

as Japan, United States and India (Hidayat et al., 2019). Aside from the financial aspects Petley (2012), 

reported over 32,000 victims globally in the years 2004-2010. With an increase in the frequency of 

rainfall extremes, the impacts are also expected to worsen over time (Hidayat et al., 2019). To limit 

the impact due to landslides, Early Warning Systems (EWS) are commonly implemented to assist in 

management and precautionary measurements on regional levels (Guzzetti et al., 2020; Hidayat et 

al., 2019). Particularly for rainfall-induced landslides (RIL), an early warning system is typically 

developed by setting a rainfall-threshold that, once exceeded,  initiates the system to issue alarms for 

further measures (Guzzetti et al., 2008; Segoni et al., 2018). These systems can be developed over 

large regions as well as at the scale of single landslides (Guzzetti et al., 2020). In the first case, rainfall 

data is usually accessed from national rain gauge networks (Al-Thuwaynee et al., 2023) or even from 
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satellite data (Wang et al., 2021) to estimate potentially unstable areas and their temporal aspect. As 

for localized early warnings, they can usually rely on a rich hydrological and geotechnical information 

gathered via landslide-specific installations, from which rainfall thresholds are still derived to 

understand possible slope failures timing (Segoni et al., 2018). Aside from the scale at which these 

tools are developed and used, another level of differentiation comes from the underlying methods 

they may rely on in the definition of suitable thresholds. Specifically, both physically and statistically-

based  approaches constitute valid solutions (Guzzetti et al., 2020). Physics-based models essentially 

use detailed slope information in terms of its morphological structure, lithological characteristics and 

hydrological conditions to quantify the rainfall amount needed to trigger a failure (Guzzetti et al., 

2007). Conversely, statistical approaches (Guzzetti et al., 2020) do not deterministically solve hydro-

mechanical equations but rather rely on historical landslide inventories to probabilistically estimate 

rainfall intensity-duration relations (Guzzetti et al., 2007). These relations are the foundation for the 

definition of rainfall thresholds in a given area. As for the concept of intensity-duration, this revolves 

around combining precipitation amounts in a given period of time, whose length determines the 

required accumulation for failure to initiate (Guzzetti et al., 2020). Nowadays, most of the methods 

belonging to the latter class follow a quite standard procedure where alert levels are defined purely 

on the basis of rainfall estimates. This is considered independently from the proneness or 

susceptibility to failure typical of a given landscape. However, the orographic effect influences rainfall 

patterns especially in highlands (Adler et al., 2003; Gariano et al., 2017; Guzzetti et al., 2008; 

Kirschbaum et al., 2012; Nguyen et al., 2014). This element only comes in a second stage, with static 

susceptibility maps being combined only with a geographic overlay criterion (Lee et al., 2008). This 

post-processing routine contributes to the hazard level assigned to a given spatial unit (Kirschbaum 

and Stanley, 2018). Decoupling the landscape response into its two main components may have been 

a suitable solution in the past, due to the limited computational tools. However, nowadays modeling 

approaches increasingly offer the ability to combine landslide susceptibility and rainfall thresholds 

in a single platform, with an inspirational example recently published by Steger et al. (2022). 

Moreover, the reliability of EWS significantly changes across the globe, with regions that are able to 

rely on dense rain gauge networks as compared to those which lack resources and are limited in their 

data acquisition. In the case of Vietnam the spatial scale at which Landslide Early Warning Systems 

(LEWS) are developed varies significantly. There exists a number of such systems that require in-situ 

soil data as well as equipment operated and maintained by manual labor at catchment or slope level 

(Gian et al., 2017; Ha et al., 2020; Tien Bui et al., 2013, 2012, 2011). In-field measurements are of a 

more accurate nature and may be temporally consistent. However, they offer discrete spatial 

information and are infeasible to acquire over a larger extent. For this reason, we can recently 

witness an increasing use of alternative rainfall information estimated from radar satellites (Hong et 

al., 2007; Kirschbaum et al., 2012, 2009).  

For extending the geographic scale, satellite products can offer very good temporal data, though 

generally at the expense of the spatial resolution (Tang et al., 2020). Moreover, the availability of 

near-real-time satellite products allowed the evaluation of potential landslide hazard prediction, 

initially by using the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 

Analysis (TMPA) at a relatively large spatial scale (Hong et al., 2006; Hong and Adler, 2007). 

Advancing on the basis of integrating satellite information, Hong and Adler (2007) later proposed an 

EWS based on real-time precipitation systems, tested on global and regional scales by Kirschbaum et 
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al. (2012). Building on these steps, the most recent development on a global scale using the diversity 

of satellite products is the release of Landslide Hazard Assessment for Situational Awareness 

(LHASA) by NASA which provides moderate to high landslide hazard every half hour (Kirschbaum 

and Stanley, 2018). With the second version of LHASA in place (Stanley et al., 2021), the core of the 

model relies on a static susceptibility map overlaid with dynamic rainfall forecasts to produce 

landslide predictions globally in real time, with new components added for increasing predictive 

power. However, a two-phased model such as LHASA essentially neglects the natural interaction of 

rainfall with terrain for modelling rainfall-induced landslides. Moreover, its current version does not 

account for uncertainty estimation, which should be particularly important to connect the 

uncertainty coming from the static susceptibility component to the dynamic precipitation 

component.  

In this manuscript, we combine the static and dynamic effects responsible for landslide occurrences 

in north Vietnam using a single space-time model. Specifically, we used a Bayesian approach to 

account for uncertainties and framed it in a Binomial GAM. Statistical influence was performed using 

the Integrated Nested Laplace Approximation (INLA; Rue et al., 2009) method, which provides fast 

computation of posteriori quantities of interest. 

 

2. Study area and Materials  

The following section provides an insight into the event-based landslide inventory used in this work 

and the selection of the complementary study area. Moreover, it describes the mapping unit used and 

covariate information used as an input to our model and the validation techniques implemented.  

 

2.1. Study area and landslide inventory information 

Among the vulnerable southeast-Asian countries (Titti et al. 2021), Vietnam shows the highest 

number of fatalities due to landslides in the rainy season extending from June to November (Amatya 

et al., 2022). For this reason, NASA’s efforts produced a landslide inventory for the Lower Mekong 

Region (LMR) for multiple rainfall triggering events (see Figure 1). The resulting multi-temporal 

landslide inventory was generated using a semi-automated mapping approach (Amatya et al., 2022), 

that we also used to test LHASA at a regional scale (Biswas et al., 2022).  
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Figure 1: Landslide points mapped by NASA in the Lower Mekong Region (Amatya et al., 2022) and the study area 

defined in North-western Vietnam 

For the present experiment, we only extracted landslides that occurred within north-western 

Vietnam and use that as our study area shown in Figure 1. This landslide subset accounts for a total 

of 9.310 landslides, clustered into 6 rainfall triggered events, as listed in Table 1. 

This area is over 59,000 km2 wide with a mountainous topography and it also represents the 

poorest sector in Vietnam (Bangalore et al., 2019). Therefore, the impact of landslide occurrences 

tends to have even worse impacts.  

 

 

Table 1: Details of the multi-temporal landslide inventory contained in the study area (Figure 1), generated by Amatya 
et al. (2022). 

Year Inventory Date Landslide Points 

2017 

1 2nd-3rd August 2014 

2 23rd-28th August 99 

3 10th-11th October 3944 

2018 

4 23rd-24th June 1310 

5 3rd August 302 

6 27th August-1st September 1641 
 

 

2.2. Mapping unit 

Due to the spatial extent of the study area and to also ensure the use of a suitable mapping unit, we 

opted to partition the study area into Slope Units (SUs; Carrara et al., 1991). This spatial partition is 

rooted in the landslide literature and has offered a valid alternative to grid-cells (Reichenbach et al., 
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2018). The reason for their success lies in their ability to reflect the morpho-dynamic response of a 

slope if a landslide triggers at that specific location. In other words, these mapping units can be 

considered independent of each other (or very weakly dependent) for landslide susceptibility 

purposes (Lombardo et al., 2020a; Titti et al., 2021). To delineate such slope unit partition, we used 

the r.slopeunits tool proposed by Alvioli et al. (2016). This tool can be called from GRASS GIS (Neteler 

and Mitasova, 2013) and only requires a Digital Elevation Model (DEM) as the input. Here we used 

the Shuttle Radar Topography Mission (SRTM; Yang et al., 2011). As for how r.slopeunits works, it 

essentially clusters grids with analogous slope exposition and vectorize the results for a given study 

site. This is achieved by constraining the procedure through a set of parameters whose explanation 

can be found in Alvioli et al. (2016). For this work, we initially tested a number of possible parameter 

combinations (unreported results) and opted for a final setting as shown in Table 2.  

 

 

Table 2: Parameter setting for generating slope units in the study area using r.slopunits. 

Parameter Set Value 
Minimum area of SU 40000m2 

Circular variance 0.5 
Large flow accumulation threshold 800,000m2 

Clean size 20,000m2 
Number of iterations 20 

 

2.3. Predictors 

2.3.1 Dynamic Covariates 

An important aspect of this study is the estimation of rainfall effect in landslide events which can be 

used to project future landslide susceptibility scenarios using a predictive equation. Respecting the 

literature which shows that prolonged rainfall before the landslide event contributes towards slope 

saturation (Guzzetti et al., 2008; Segoni et al., 2018), we integrate cumulative antecedent rainfall. 

This represents the dual rainfall effect (the event day and potential recent discharge prior to the 

event) as the triggering factor. To represent the spatio-temporal distribution of precipitation for each 

event, together with cumulative antecedent rainfall, we used CHIRPS (Funk et al., 2015). This choice 

is mainly due to the relatively high spatial resolution (~5.5km) of this global product. As for its 

temporal characteristics, CHIRPS offers daily rainfall aggregates achieved with just a 2-day latency 

(Funk et al., 2015).  

Alongside to the rainfall characteristics, we also considered including dynamic vegetation indices as 

part of our covariate set. We therefore opted for using Enhanced Vegetation Index (EVI) obtained  

from MODIS AQUA (Didan, 2015) at approximately 250 meters of spatial resolution and a 16-day 

revisit time. Notably, both products were accessed, preprocessed and downloaded via Google Earth 

Engine (Gorelick et al., 2017; Mutanga and Kumar, 2019). There we aggregated them at the SU scale 

by taking the maximum daily rainfall as well as the mean 16-day value of the EVI. 

 

2.3.2 Static Covariates 

Static predictors were also extracted via GEE. Specifically, we accessed the cloud-available SRTM 

DEM at 30m resolution and computed terrain attributes by using the SRT function built by Titti et al. 
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(2022). This tool allows to compute terrain characteristics and aggregate them at any spatial scale. 

The latter is a particularly important requirement because of the SU partition we opted for. In fact, 

hundreds of DEM pixels can fall in a single SU and therefore summary statistics of the corresponding 

covariate distribution per polygon have to be computed. Here we do so by taking the mean and 

standard deviation of every continuous covariate. These have been selected among a number of 

standard landslide predisposing factors in the susceptibility literature (see Budimir et al., 2015), 

listed as follows: (1) Elevation (Görüm, 2019), (2) Slope steepness (Wu and Sidle, 1995), (3) Planar 

and (4) Profile curvatures (Ohlmacher, 2007), (5) Eastness (Leempoel et al., 2015) (6) Northness 

(Epifânio et al., 2014) and (7) Internal Relief (Görüm, 2019; Qiu et al., 2018). 

 

3. Method 

3.1 Modeling framework 

To model landslide susceptibility in space and time, we used a Bayesian version of a binomial GAM 

(Hastie, 2017). Assuming a priori that the probability of landslide occurrence can only be explained 

through a linear function may not hold for all predictors one may choose. For this reason, a GAM is 

much more versatile as it allows for the integration of linear as well as non-linear effects (Goetz et 

al., 2015). A logistic GAM, expressed for binary data (namely landslide presence/absence), can be 

formulated in its simplest form through its equation for the log-odds as follows; 

 

    (1) 

 

where P indicates the probability of landslide presence in a mapping unit, βo is the global intercept, 

each βi represents the regression coefficient of the accompanying covariate (χi), which are assumed 

to have a linear effect on unstable slope units and ƒ expresses nonlinear function of the covariate 

χm+1. In practice, non-linear effects may be implemented by discretizing the continuous covariate 

χm+1 into n discrete classes and enforcing statistical dependence (e.g., through an autoregressive 

structure) between the effects of neighboring classes. 

The modelling process has been implemented using R-INLA (Integrated Nested Laplace 

Approximation) package of R (RStudio Team, 2023), commonly used for support Bayesian inference 

(Rue et al., 2009). 

 

3.2 Antecedent rainfall-window 

Intensity-duration relationships (Guzzetti et al., 2008, 2007; Hong et al., 2006; Kirschbaum et al., 

2012) have been an essential part in most of the traditional LEWS. To adhere to that concept as part 

of our space-time modeling approach, we also explored the effect of cumulative antecedent rainfall. 

We do so by computing rainfall as 14 potential aggregated covariates, corresponding to the maximum 

daily sums from the day of the triggering event (inclusive) to the 14th day before the landslide 

occurrence. Specifically, we fit 14 separate space-time susceptibility models and then use the 

Watanabe Akaike Information Criteria (WAIC; Whalen and Hoppitt, 2016) to select the most suitable 

day representing the intensity-duration effect. WAIC is commonly used as a model selection tool 

which can be used to compare sets of covariates in order to identify the ideal combination whilst 

keeping the rest of the parameters the same. In fact, model ranking can be obtained by sorting WAIC 
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in ascending order since the lowest value represents the best predictor set. Notably, Amatya et al. 

(2022) could not assign a specific landslide triggering day to each inventory out of the six we consider 

here. Therefore, not only the WAIC is here used to indicate the most suitable antecedent window but 

also the best triggering day, within the error date reported by the authors. 

 

3.3 Validation techniques 

Any susceptibility model needs to be equipped with a validation phase necessary to evaluate its 

capacity to suitably predict an unknown dataset (Chung and Fabbri, 2008, 2003; Lombardo and 

Tanyas, 2020; Remondo et al., 2003). Most of the landslide community adopts a purely random 

approach for validation (Neuhäuser et al., 2012). However, such bootstrap techniques do not usually 

perturb the dataset to the point of disaggregating the spatial structure in the data (Brenning, 2005). 

Thus, the resulting performances do not stray away from the ones estimated for the fit. This is why a 

fewer number of more rigorous articles adopt a spatial-cross-validation (SCV) technique instead (see 

Brenning, 2012). For space-time models, the context explained above is even more relevant. In fact, 

removing observations entirely at random from a large spatio-temporal domain, leaves most of the 

data structure unchanged. Therefore, the resulting performances may be misleadingly and almost as 

high as for the fit to the entire observed dataset. For this reason, it is important to design suitable 

cross-validation (CV) techniques, and combine the SCV framework shown in Lin et al. (2021) together 

with temporal CV routines. In this work, we tested a number of those to retrieve the full spectrum of 

modeling performance offered by our space-time susceptibility model; more details will be provided 

below. For all of them, we will use the Area Under the Curve (AUC) of the Receiver Operator 

Characteristic (ROC) curve, as a performance indicator (Yang and Berdine, 2017; Zou et al., 2007).  

 

3.3.1 Unstructured cross-validation 

The simplest validation routine we adopt is a 10-fold CV for which we partition the space-time 

domain into ten mutually-exclusive subsets for training (90%) and testing (10%). 

 

3.3.2 Spatial cross-validation 

Here we create a large gridded lattice (Figure 2), which we iteratively use to select all the single-grid-

intersected slope units for validation. The complementary sample, is used instead for calibration. 
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Figure 2: Representation of the lattice over the study area for spatial validation scheme. 

 

3.3.3 Temporal cross-validation 

Here we opted for a dual temporal CV approach. The first one boils down to a leave-one-landslide-

event-out (LOLEO) routine, where five out of six inventories are used for calibration and the 

predictive performance are iteratively monitored over the excluded inventory.  

By contrast, the second approach uses a sequential criterion where the first model is built using only 

the first inventory (in time) and is validated over the second. In the next step, the model integrates 

the first and second inventories validating over the third, until the last test uses the sixth inventory 

for validation, being trained over the combination of all the previous ones.   

 

3.3.4 External cross-validation 

Even in the case of the validation suites we described above, the locations and time used for testing 

are essentially the same as used for the model fit. We opted to include another validation step based 

on an independent dataset to check if our model is able to extrapolate to a different space-time 

domain. We recall here that the multi-temporal landslide inventory mapped by NASA covers the LMR 

(see, Amatya et al., 2022). We therefore decided to use three landslide clusters in Vietnam and two 

from Laos (shown later in Figure 8) as the prediction target. 

 

4. Results 

4.1 Antecedent rainfall-window 

To select the best fitting cumulative rainfall capable to explain the landslide distribution, we 

computed the precipitation aggregated over multiple antecedent windows and retrieved the 

corresponding WAIC of each model. In complementary manner, for each aggregated rainfall measure, 

we also computed a LOLEO-CV to assist the selection of a suitable rainfall window. Both WAIC and 

AUC values are shown in Table 3, where we sorted the cumulative antecedent rainfall windows with 
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ascending WAIC values. Interestingly, the WAIC and AUC seem to point out at slightly different 

antecedent windows. If we look at the WAIC results, the best antecedent rainfall corresponds to the 

2-days cumulative antecedent rainfall window. Conversely, the highest average AUC across LOLEO-

CVs belongs to 8-days antecedent rainfall window. An interesting consideration to be made here is 

that despite the fact that we tested up to 14 days of antecedent rain, the top half of the ranked 

performance table only includes a maximum of 9 antecedent days. This may indicate that any long-

term meteorological signal may not bring any additional information to the model. In other words, it 

is the short-term rainfall discharge that controls the landslide distribution in the study area.  

As for the most suitable specific rainfall window, the first two best models according to the WAIC 

correspond to 1-day and 2-days prior to the landslide event. We recall that in Section 2.1, the 

maximum dating error among landslide-events was up to 6 days.  For this reason, a WAIC-oriented 

choice would lead to a time window contained within the potential dating error. Hence, looking at 

the next viable option, the 8-days antecedent precipitation ranks third with the lowest WAIC, but also 

corresponds to the highest AUC resulted from the LOLEO-CV. For this reason, we opted for the 8-

days’ time-window in the remainder of the manuscript, to be used as our reference antecedent 

window for rainfall during the modeling phase.  

 

Table 3: First 7 models sorted in ascending order of WAIC with corresponding ROC-AUC values of the temporal 
validation. 

Antecedent 

Rainfall Days 
WAIC Average AUC 

2 23492.17 0.828 

1 23636.73 0.827 

8 23685.13 0.831 

3 23735.00 0.830 

9 23790.42 0.818 

4 23824.17 0.829 

7 23834.70 0.830 

 

4.2. Model Fit 

In this section, we initially present the estimated covariate effects, both in their linear and nonlinear 

forms (see Figure 3). Specifically, out of the sixteen covariates used for this study, mean Slope 

(expressed in degrees), Internal Relief (expressed in meters) and Maximum Distance (also expressed 

in meters) were modelled as ordinal variables, with an adjacent-class-dependence driven by a 

Random Walk of first order (RW1; for more information see Bakka et al. 2018). The remaining 

covariates were all featured as linear effects in the model (Figure 3a). This choice emerged from a 

number of unreported test where we individually checked each covariate behavior, to isolate those 

that clearly required a non-linear use.  

In Figure 3c, the mean slope displays an increasing trend, demonstrating the overall positive effect 

of the slope steepness to the instability. A detailed look highlights a marked negative contribution 

until approximately 25°. From this point, the mean slope regression coefficient becomes increasingly 

positive up to 35° after which it flattens out. The posterior distribution of the mean relief (Figure 3b) 

also varies in its effect . It starts by depicting a positive trend until ~600m, after which the curve 
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indicates a decrease towards negligible effects from around 1200m onwards. The use of the SU 

maximum distance is meant to convey shape characteristics into the model under the assumption 

that elongated slope units may be more suitable for the development of shallow flow-like landslides 

such as the ones that comprise the inventory. This is reflected in the marginal plot (Figure 3d), where 

short distances are associated to negative regression coefficients, which rapidly become positive 

already at maximum lengths of 2000m. 

 

 
Figure 3: Summary of each model component expressed in terms of regression coefficients. Panel (a) reports the 

contribution of the covariates used linearly. The suffix µ and σ denote the mean and standard deviation values 
computed from the original covariates per slope unit. CAR8d represents the dynamic rainfall covariate obtained over 

a 8-day cumulative antecedent window. Panels (b), (c) and (d) report the contribution of the nonlinear cases. 

 

As for the contribution brought by the linear effects, significantly positive contributing covariates 

include elevation (standard deviation), Eastness (mean), planar curvature (standard deviation), 

Northness (mean and standard deviation), antecedent rainfall and EVI (standard deviation). 

Conversely, significantly negative contributions correspond to elevation (mean), slope (standard 
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deviation), profile curvature (mean and standard deviation), EVI (mean) and roundness index of the 

slope unit. 

 

We present here the model results in map form by plotting summary statistics out of each 

susceptibility map. Specifically, our space-time model returns the full posterior distribution of the 

susceptibility, from which we initially estimate two metrics namely, the posterior mean and width of 

the 95% credible interval (CI), measured as the difference between the 97.5 and 2.5 percentiles of 

the susceptibility for each of the six landslide events. These results are later combined by showing in 

Figure 4, the mean value of the six posterior mean susceptibility distributions across the six maps 

(Figure 4a), together with the mean of the posterior 95% CI measured across the same (Figure 4b).  

   

 
Figure 4: Combined susceptibility of six inventories (used in calibration). Panel (a) showing the mean susceptibility, 

panel (b) showing the 95% credible interval. 

 

4.3. Unstructured cross-validation 

Sampling the spatio-temporal domain into ten random subsets and validating each subset yields an 

excellent model performance. Figure 5 displays the individual output of each validated subset. The 

relative range of the AUC for the ROC curves is shown as the boxplot in Figure 5 which ranges 

between 0.855 to 0.880. 
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Figure 5: ROC curves for AUC retrieved in 10-fold cross validation scheme along with the expanding range of AUC 

values. 

 

4.4. Spatial cross-validation 

The grid numbers of the lattice over the study area (Figure 2) are used as validation blocks with 

their representative performances summarised in Figure 6. The corresponding AUC values show a 

variation within the grid-cells containing uneven SUs (study area covered). However, only a few 

blocks result in 0.6<AUC<0.7, while the rest reports good to excellent values. 

 

 
Figure 6: AUC values for corresponding grid cells and combinations of grid cells obtained from the lattice over the 

study area for spatial validation. Purple: low AUC, Red: acceptable AUC, Yellow: good AUC, Green: excellent AUC. 

 

4.5. Temporal cross-validation 

In this section, we present two different temporal validation routines. We recall that the first one 

makes use of the first inventory to predict the second, then a combination of the first two to predict 

the third and so on until the sixth one. Conversely, the second routine (LOLEO) calibrates over five 
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inventories and predicts the sixth one, for each inventory separately. Figure 7a summarises the 

sequential validation performance of our model, which appears to produce good classification results 

according to Hosmer et al. (2003). Differently from the previous CV tests, here we observe a much 

larger spread of the resulting ROC curves. The situation goes back to an excellent performance for 

the LOLEO, as shown in Figure 7b.     

 

 
Figure 7: ROC curves with AUC for panel (a) showing sequential temporal validation and panel (b) showing LOLEO 

temporal validation. 

 

4.6. External cross-validation 

Thanks to the availability of inventories in nearby areas of our study site, we can test the model 

transferability over an independent dataset, for landslide events mapped far away. A total of five 

external sites are used for such a test, where three of the sites are still located within Vietnam (but in 

the south) and the other two are located in Laos (see Figure 8). The resulting AUC values in Figure 8 

are good to excellent with an exception to test site 4, which gives poor but better-than-random 

predictions. 
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Figure 8: External validation sites and their respective AUC values in external cross-validation scheme. 

 

4.7. Probability threshold 

To translate the model into an early warning system, one of the main requirements is to convert the 

continuous spectrum of probabilities into a dichotomous output that expresses the probabilistic 

expectation of a SU to be potentially stable or unstable. To binarize the probability spectrum, we 

initially assessed the True Negative Rate (TNR) and the True Positive Rate (TPR) at every 0.05th 

quantile for each of the LOLEO temporal validations. Figure 9 depicts the patterns of TNR and TPR 

for each probability cut-off, whose intersection we considered suitable to choose a cutoff. Specifically, 

we took the six intersection points, and took the mean of the corresponding probabilities as our 

reference cutoff.  

 
Figure 9: Combination of six inventories (when each used for validation) displaying sensitivity and specificity at every 

0.05th quantile for selecting a threshold to define a probabilistic cutoff. 
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4.8. Web application 

The interactive interface of the GEE application visualizes the mean susceptibility and converts them 

directly into alert levels using the probability cutoff mentioned in the previous section. In the 

backhand, the platform essentially takes the posterior mean of each covariate effect and solves the  

additive equation obtained from the original fitted model but over the data obtained for any date 

selected by the user. Notably, this web-App was built as a proof-of-concept and cannot be used for 

predictive purposes because CHIRPS products become available in GEE only after approximately six 

weeks. In other words, out web-App can be used to visualize previous events but cannot be used as 

a forecasting tool yet, given the unavailability of CHIRPS forecast product (REF) in GEE to integrate 

in the webApp. The webApp can be accessed at this link: 

https://mahnoorahmed5593.users.earthengine.app/view/dynamicsusceptibility. 

 

5. Discussion 

Starting with the model selection tool, the results indicate the most suitable rainfall-window for our 

study area to be eight days. Theoretically, a very short window would be indicative of the effect of 

intense rainfall discharge associated to short cloudburst. However, the emerging 8-days aggregation 

window is diagnostic of a system where the duration also plays a determinant role.  

Most of the literature dedicated to temporal landslide prediction is based on rainfall thresholds and 

only very few recent studies have framed the same in the multivariate space-time data-driven 

contexts (see Nocentini et al., 2023; Steger et al., 2023). In this work, we follow an analogous 

approach, leaning towards a probabilistic solution that holistically integrates the rainfall signal 

together with terrain characteristics.  

Another interesting element we explore here relates to the use of suitable model assessment tools. 

In fact, space-time models can exhibit an internal spatio-temporal dependence, that often leads to 

overly positive performance. For this reason, CV routines should break up any residual dependence 

in the data, in order to highlight how a model actually predicts over unseen test data. In this work, 

we do this extensively, exploring a number of spatial and temporal CV routines.  

The importance of such tools inevitably falls on how efficiently a given data-driven model can be 

extended towards its operational use. In fact, operational LEWS are often subject to large false 

positives. These are due to overestimation of the landslide occurrence probability in areas that are 

stable. Our model, irrespectively of the CV at hand, showed very high prediction capacity, which in 

turn suggests that the inclusion of terrain attributes into the model helps with suitably classifying the 

landscape. Similar considerations can be made for false negatives cases, which usually refer to 

problematic situations where the failure of a given LEWS potentially leads to casualties. Precisely for 

this reason, we prescribe extensive validation tests, something that in this work have displayed not 

only locations and times where the model successfully performed but also where and when it failed. 

Specifically, the SCV highlighted the southernmost sector of the study area (grid 18, see Figure 2) to 

be associated with the least classification performance (Figure 6). Interestingly, when we extended 

the SCV outside the boundaries of the study area via the external validation test, moving further to 

the south and west, it did not show a consistent performance drop. Actually, most of the unstable SUs 

were successfully predicted with the exception of site 4 (see Figure 8). Therefore, since our model 

does not include some important covariate information (lithology, distance to road and river, etc.) 

https://mahnoorahmed5593.users.earthengine.app/view/dynamicsusceptibility
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which can be used to enhance the model and prediction ability, we cannot definitively conclude the 

reason behind this specific performance drop. Irrespective of such site-specific results, our space-

time model suitably predicted the distribution of stable/unstable SUs. However, the assessment 

discussed so far mainly revolves around the spatial dimension and needs to be therefore extended in 

time for our model to be evaluated as a LEWS valid alternative. We explored this element in our 

sequential and LOLEO-CV procedures, where almost all out-of-sample results were associated to an 

excellent performance. The only exception corresponded to the output of validating on inventory 2 

in the sequential temporal validation scheme (see Figure 7a). Interestingly, this inventory is 

associated with the least number of landslides among all. Therefore, the low performance shown in 

this case leads to two considerations. The first one is that the reason for such drop can be justified 

with a model that may have locally overestimated the slope response. In turn, this implies that a 

potential failure if adopted as a LEWS would most likely produce false positives, and would therefore 

not lead to expected losses, which are common in case of the opposite error type. Also, a possible 

reason for the performance drop may be due to the error in the dating corresponding to a possible 

window of five days (see Table 2). This is something that unfortunately cannot be addressed here but 

that future research directions could potentially solve. In fact, a number of recent studies are trying 

to limit the error in landslide dating by incorporating information (coherence amplitude drop) from 

radar satellites in addition to the traditional optical one. Moreover, an increasing number of 

investments in new constellations would likely cover the earth surface on a more frequent basis in 

the future, thus limiting the dating error even further.  

We also stress once more the importance of an uncertainty estimation to be incorporated as part of 

any probabilistic model for landslide prediction. Here this is possible to produce it natively due to 

our Bayesian framework, but we also recommend it in case of frequentist alternatives via 

bootstrapping. Unfortunately, this is not always part of LEWS.  

As an additional nested experiment, we also tested the most suitable probability cutoff 

representative of multiple available landslide inventories. To do so, we have proposed a combination 

of sensitivity and specificity values to be explored as a function of a quantile description of the 

susceptibility spectrum (optimal region roughly between the 0.70th -0.85th quantiles). The resulting 

cutoff was used to maximize the classification results displayed via the LEWS, which we translated 

into the ‘warning’ and ‘no warning’ shown in our interactive GEE WebApp. Notably, our WebApp 

highlights both the strengths of our approach as well as its weaknesses. In fact, as interesting as our 

space-time model may be and as transparent our results may be via the WebApp, the system is bound 

to the rainfall product we used (CHIRPS). This product has a native latency of 1.5 months, which is 

the time required to make the data available in GEE, after the data itself have been re-processed to 

minimize the bias between raw radar acquisitions and ground-based rain gauge measures. For this 

reason, our model is only theoretically useful in an operational sense. In reality, by the time the 

rainfall estimates become available, potential landslides have already manifested and produced 

damages. Currently, we see our model as a proof-of-concept of how the future generation of LEWS 

may become. However, for this to happen, we already see potential improvements in the form of 

rainfall data usage and processing. The first development involves the use of rainfall forecasts (e.g., 

GPM/TRMM) rather than re-processed data. In fact, if a LEWS would prove to suitably predict 

landslides as a function of past records of precipitation forecast, one could then use the space-time 

architecture as the basis for simulating future unstable SUs, plugging in future rainfall projections. 
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However, even in this case, two main issues may affect the rainfall data and hence the model itself. 

The former is the difference between forecast data and rain gauge measurements, which should be 

ideally minimized. Interestingly, a number of valid solutions have been recently shown to minimize 

the gap or bias between observations and satellite estimates, individually (Beck et al., 2019, 2017) or 

through smart-data blending (Beikahmadi et al., 2023). Therefore, we expect better rainfall products 

in the future and through them better LEWS. Where we see the major challenge is in the way to 

account for precipitation uncertainties. Currently, the uncertainty in the expected weather systems 

varies as one gets closer to the day of interest. In other words, precipitation patterns and amounts 

forecasted 10 days in advance may be different and less reliable as compared to the same parameters 

forecasted a day or just few hours ahead of time (Cuo et al., 2011). Our current regional model 

requires 8-days cumulative antecedent rainfall , but other study areas may require less. Therefore, 

the potential transferability of such space-time solution would need to be tested also in the context 

of different uncertainty levels in the rainfall input. In this sense, we see the Bayesian framework as a 

perfect modeling platform to propagate different levels of uncertainty, recommending it especially 

in such cases, and among the available solutions, INLA would most likely offer the best estimation 

paradigm that allows fast Bayesian inference with relatively complex models (Simpson et al., 2011).  

 

6. Conclusion 

Early warning systems for rainfall-induced landslides have historically treated the precipitation 

signal separately from the landscape characteristics typical of susceptibility studies. However, space-

time data-driven solutions allow one for incorporating both elements at once, potentially opening up 

for a new generation of alert systems. This work explores this topic, using several landslide 

inventories mapped for the northern territory of Vietnam. In doing so, we demonstrate how space-

time statistics can efficiently predict landslide occurrences, featuring a number of nested 

experiments, from the use of Bayesian models, to performance assessment via a suite of 

spatiotemporal CVs and ultimately by showcasing how web applications can graphically convert the 

results in a way that anyone can freely access them.  

Despite the novelty, few elements still require further investigation before offering operational 

solutions, among them the use of rainfall forecast data rather than past projections. Moreover, we 

also envision additional efforts to be required for moving beyond the susceptibility context. For 

instance, one could model the extent of the landslides in space and time to ultimately generate space-

time intensities rather than occurrence probabilities (Lombardo et al., 2020b, 2018). Ultimately, this 

approach could even be extended to bind exposure data in space and time, giving birth to risk-

oriented LEWS. To do so, one would need the statistic information of buildings and infrastructure as 

well as the dynamic information of population densities. Overall, this is to say that space-time data-

driven models are at an infancy phase in the context of landslides. They can certainly constitute the 

foundation for even systems that may exploit reliable rainfall forecast and return impact-based 

predictions.       
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