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Abstract

Moving average processes driven by exponential-tailed Lévy noise are important extensions

of their Gaussian counterparts in order to capture deviations from Gaussianity, more flexible

dependence structures, and sample paths with jumps. Popular examples include non-Gaussian

Ornstein–Uhlenbeck processes and type G Matérn stochastic partial differential equation ran-

dom fields. This paper is concerned with the open problem of determining their extremal

dependence structure. We leverage the fact that such processes admit approximations on grids

or triangulations that are used in practice for efficient simulations and inference. These approx-

imations can be expressed as special cases of a class of linear transformations of independent,

exponential-tailed random variables, that bridge asymptotic dependence and independence in a

novel, tractable way. This result is of independent interest since models that can capture both

extremal dependence regimes are scarce and the construction of such flexible models is an active

area of research. This new fundamental result allows us to show that the integral approxima-

tion of general moving average processes with exponential-tailed Lévy noise is asymptotically

independent when the mesh is fine enough. Under mild assumptions on the kernel function we

also derive the limiting residual tail dependence function. For the popular exponential-tailed

Ornstein–Uhlenbeck process we prove that it is asymptotically independent, but with a differ-

ent residual tail dependence function than its Gaussian counterpart. Our results are illustrated

through simulation studies.
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1 Introduction

Moving average processes, also referred to as process convolutions, are popular and natural con-

structions for non-stationary and non-Gaussian processes that are widely applied in spatial statistics

(Higdon, 2002; Cressie & Pavlicová, 2002; Rodrigues & Diggle, 2010; Ver Hoef & Peterson, 2010).

They are defined as

u(s) =

∫
D
G(∥s− t∥)M(dt), (1)

where D is a Borel subset of Rd that possibly can depend on s, G : R+ → R+ is a measurable

M-integrable function, and M is a random measure (Kallenberg, 2017). A classical example in

the temporal domain d = 1 is the non-Gaussian Ornstein–Uhlenbeck (OU) process developed in

Barndorff-Nielsen & Shephard (2001) to model stochastic volatility in financial econometrics; see

also an application of this model to longitudinal data in Asar et al. (2020).

Another related approach for constructing non-Gaussian processes is via a stochastic partial

differential equation (SPDE) (Barndorff-Nielsen & Shephard, 2001; Bolin, 2014; Bolin & Wallin,

2020). The stationary solution (if it exists) to such an SPDE admits an integral representation of

the form (1). In the spatial domain R2, an important instance of these constructions are the type

G Matérn SPDE random fields (Bolin, 2014; Bolin & Wallin, 2020), a non-Gaussian extension of

the popular Gaussian Matérn SPDE random fields (Lindgren et al., 2011).

The key advantage of the SPDE-based process formulation is that one can approximate its

solution by using the finite element method to obtain sparsity in the resulting precision matrix (or

inverse of the dispersion matrix in the non-Gaussian case), thus achieving computationally efficient

simulation and inference (Lindgren et al., 2011; Bolin, 2014; Bolin & Wallin, 2020). This finite

element approximation has the form of a linear transformation un(s) =
∑n

i=1 ai(s)Yi, where the

coefficients ai(s) ≥ 0 are determined by the constructed basis functions on the triangulation with

n mesh nodes, and Yi are independent Gaussian or non-Gaussian random variables, depending on

the random measure M. Non-Gaussian SPDE models are widely used in applications whenever

the assumption of Gaussianity is too stringent. As an illustration, the left panel of Figure 1 shows

the triangulation constructed in Bolin & Wallin (2020) for Argo float data, a data set that consists

of measurements of seawater temperature and salinity in the global ocean and that has motivated

the use of non-Gaussian processes due to its non-Gaussian features such as skewness and heavier
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Figure 1: Observation locations and triangulation mesh used for Argo float data in Bolin & Wallin
(2020) (left panel), and its induced residual tail dependence coefficients η for all pairs of locations
for the finite element (light-grey triangle points) and integral approximations (dark-grey round
points) of a type G Matérn SPDE model, and their limiting function (black line).

tails than Gaussian distributions (Kuusela & Stein, 2018).

The dependence structure of SPDE and integral-based process constructions has mostly been

studied in terms of their Pearson’s correlation. This linear dependence measure does, however, not

fully describe the process for non-Gaussian distributions. In fact, the correlation function of these

processes is the same regardless of whether Gaussian or non-Gaussian noise is used. Extremal

(or tail) dependence describes the strength of dependence in the joint upper or lower tail of a

multivariate distribution. It is crucial for risk assessment as it quantifies whether the largest

realizations at different locations occur simultaneously. This paper is concerned with the open

problem of determining the extremal dependence structure of popular non-Gaussian processes and

their linear approximations that are used in practice.

Let (X1, X2) be a random vector with marginal distribution functions FX1 and FX2 , respectively.

A commonly used measure of extremal dependence is the (upper) tail dependence coefficient (Coles

et al., 1999)

χ = lim
q↑1

χ(q) = lim
q↑1

Pr(FX1(X1) > q | FX2(X2) > q), (2)

which satisfies χ ∈ [0, 1] provided that this limit exists. Since the extremal dependence in the

lower tail can be obtained by negating the random vector, here we only focus on the upper tail.

We call X1 and X2 asymptotically dependent if χ > 0, and asymptotically independent otherwise.
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In the latter case, the residual tail dependence coefficient η (Ledford & Tawn, 1996) measures the

second-order extremal dependence behavior and is defined as

η = lim
q↑1

log(1− q)

log Pr(FX1(X1) > q, FX2(X2) > q)
, (3)

provided that this limit exists. For χ = 0, the coefficient 1/η describes the rate of convergence of

χ(q) → 0 as q → 1.

The extremal dependence structure of continuously indexed processes of the form (1) is chal-

lenging to derive due to the lack of analytical expressions of the induced multivariate distribution or

density functions. We therefore first consider a discretely indexed model of linear transformations

 X1 = a11Y1 + · · ·+ a1nYn,

X2 = a21Y1 + · · ·+ a2nYn,
(4)

where Yi, i = 1, . . . , n, are independent and have exponential tails with the same index, and with

coefficients aji ≥ 0, j = 1, 2, i = 1, . . . , n. This model is motivated by the finite element ap-

proximation of the Matérn SPDE fields and integral approximation of general moving average

processes. For example, if we approximate (1) by un(s) =
∑n

i=1G(∥s− ti∥)M(Di) for a parti-

tion {Di} of D and ti ∈ Di, and let Xj = un(sj), then aji = G(∥sj − ti) and Yi = M(Di). The

exponential tail of the noise variables appears naturally in the commonly used non-Gaussian

processes. Under mild assumptions we show that X1 and X2 are asymptotically dependent if

we have argmaxi∈{1,...,n} a1i = argmaxi∈{1,...,n} a2i, and they are asymptotically independent if

argmaxi∈{1,...,n} a1i ∩ argmaxi∈{1,...,n} a2i = ∅. This novel result is of independent interest since

it provides a tractable way to bridge asymptotic dependence and independence by simply varying

the coefficients in (4). It thus gives a partial answer to the second open problem raised in Nolde &

Zhou (2021) who ask how to build flexible parametric models that bridge both extremal dependence

regimes.

With this fundamental building block, we then study the extremal dependence structure of gen-

eral moving average processes with exponential-tailed noise. We show that under mild assumptions

on the kernel function and the noise, the integral approximation of such processes is asymptotically

independent when the mesh is fine enough, and we derive the limiting residual tail dependence func-
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tion. Moreover, we prove that the exponential-tailed non-Gaussian OU process (Barndorff-Nielsen

& Shephard, 2001) is asymptotically independent, but with a different residual tail dependence

function than its Gaussian counterpart. As for the Argo float measurements data application, we

consider the normal inverse Gaussian (NIG) Matérn SPDE fields, which are a specific class of type

G Matérn SPDE fields. The right panel of Figure 1 shows the residual tail dependence coefficients

of the finite element and integral approximations, and its theoretical limiting function as the tri-

angulation mesh size goes to zero. We conduct additional empirical studies in Section 4.3 and

Appendix D to illustrate our results.

For moving average processes of the form (1), Opitz (2018) studied the extremal dependence

structure when the kernel function G is an indicator function, while Krupskii & Huser (2022)

studied the extremal dependence structure when M is a Cauchy random measure; for other cases,

the extremal dependence structure remains unknown. Our results are thus interesting since they

motivate new constructions of non-Gaussian moving average processes and SPDE-based processes

for extremes.

2 Preliminaries on Exponential-Tailed Functions

A function h : R → R+ with limx→∞ h(x) = 0 is said to have an exponential tail with index β ≥ 0,

denoted as h ∈ Lβ, if

lim
x→∞

h(x− t)/h(x) = exp(tβ), t ∈ R.

A univariate distribution function F is said to have an exponential tail if its survival function F̄

satisfies F̄ ∈ Lβ for some β ≥ 0. This is different from the conventional notation F ∈ Lβ, where the

set Lβ is restricted to be the family of all exponential-tailed distribution functions. Our definition

of Lβ for general, nonnegative functions allows us to also cover exponential-tailed density functions.

If F̄ ∈ Lβ is such that we further have limx→∞ F ∗ F (x)/F̄ (x) = M < ∞, where ∗ denotes the

convolution operator, then F is called convolution tail equivalent, denoted by F̄ ∈ Sβ. Clearly,

Sβ ⊂ Lβ.

A function g : R+ → R+ is called regularly varying at ∞ with index ρ ∈ R if for any t > 0,

limx→∞ g(tx)/g(x) = tρ, in which case we write g ∈ RV ρ. If ρ = 0, g is called slowly varying.

Exponential-tailed and regularly varying functions are intimately related to each other, since for
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β ≥ 0, h ∈ Lβ if and only if h ◦ log ∈ RV −β. Using this relationship, we obtain a similar

representation of exponential-tailed distribution functions to Karamata’s representation of regularly

varying functions (see Corollary 2.1 in Resnick (2007)), namely for F̄ ∈ Lβ, we have

F̄ (x) = a(x) exp
{
−
∫ x

0
β(v)dv

}
, x ∈ R, (5)

where a(x) → a ∈ (0,∞) and β(x) → β as x→ ∞. This will be repeatedly used in our proofs.

Two prominent examples of exponential-tailed distributions are the generalized inverse Gaus-

sian (GIG) distribution and the generalized hyperbolic (GH) distribution (Barndorff-Nielsen, 1977;

Prause, 1999; McNeil et al., 2005). A random variable R is said to have a GIG distribution, denoted

as R ∼ GIG(λ, τ, ψ), if its Lebesgue density is

fGIG(x) =
(ψ
τ

)λ/2 xλ−1

2Kλ(
√
τψ)

exp
{
− 1

2

(τ
x
+ ψx

)}
, x > 0,

where Kλ is the modified Bessel function of the second kind with index λ. If a random variable Z

has the stochastic representation as a normal mean-variance mixture, i.e.,

Z = µ+ γR+
√
RW, µ, γ ∈ R,

where W is a standard normal random variable and R ∼ GIG(λ, τ, ψ), then Z is said to have the

GH distribution, denoted as Z ∼ GH(λ, τ, ψ, µ, γ), and its Lebesgue density is given in Appendix E.

The admissible parameter values in both the GIG and GH distributions are λ < 0, τ > 0, ψ ≥ 0,

or λ = 0, τ > 0, ψ > 0, or λ > 0, τ ≥ 0, ψ > 0. The special cases ψ = 0 and τ = 0 should be

understood as limiting cases. Another limiting case, when R is degenerate and thus Z follows a

Gaussian distribution, is not considered in this paper as Z does not have an exponential tail in this

case.

It is easy to see that the GIG density function (thus, also its distribution function) has exponen-

tial tails. The GH density and distribution functions also have exponential tails and the details are

given in Appendix E. Furthermore, the GIG and GH distributions are convolution tail equivalent

if and only if λ < 0; see Embrechts & Goldie (1982) for more details. The GIG and GH distri-

butions are infinitely divisible, and their associated Lévy processes are widely used in finance; see
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Eberlein (2001) and McNeil et al. (2005) for an overview. The main examples in Barndorff-Nielsen

& Shephard (2001) are the GIG Lévy processes, while the non-Gaussian noise considered in Bolin

(2014), Wallin & Bolin (2015), and Bolin & Wallin (2020) is based on certain subclasses of the GH

distribution.

3 Linear Transformations

3.1 General Framework and Outline

In this section, we focus on the extremal dependence of the random vector X = (X1, X2) defined

in (4) with aji ≥ 0, max a1i > 0, max a2i > 0, and a1i + a2i > 0, j = 1, 2, i = 1, . . . , n. We work

under the following assumptions throughout the paper unless otherwise stated:

A.1 Yi, i = 1, . . . , n, are mutually independent with identical distribution function FY such that

F̄Y ∈ Lβ for some β > 0;

A.2 FY is absolutely continuous with density fY .

The assumption of identical distribution functions in condition A.1 can be relaxed to differ-

ent exponential-tailed distribution functions with the same index β, i.e., Yi ∼ FYi such that

F̄Yi ∈ Lβ, β > 0, i = 1, . . . , n, but for the sake of simplicity we assume here that they have a common

distribution FY .

Although the dependence structure in model (4) is defined via simple linear transformations,

surprisingly, nontrivial extremal dependence structures can be obtained. Specifically, it turns out

that the extremal dependence of X = (X1, X2) mainly depends on the largest coefficients among

a1i, i = 1, . . . , n, and a2i, i = 1, . . . , n. We will show that the components of the vector X are

asymptotically dependent if there is equality of the maximizing sets

argmax
i∈{1,...,n}

a1i = argmax
i∈{1,...,n}

a2i. (6)

We discuss this case in Section 3.2. On the other hand, there is asymptotic independence if these
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sets have an empty intersection

argmax
i∈{1,...,n}

a1i ∩ argmax
i∈{1,...,n}

a2i = ∅, (7)

which is discussed in Section 3.3. The delicate boundary case where the two maximizing sets

argmaxi∈{1,...,n} a1i and argmaxi∈{1,...,n} a2i are not equal but have a non-empty intersection, is

discussed in Section 3.4.

It is interesting to note that this behaviour is in sharp contrast to the case of heavy-tailed

linear (e.g., Gnecco et al., 2021) and max-linear (e.g., Wang & Stoev, 2011) models, where the

random variables Yi have common survival function F̄Y ∈ RV −β. In this more classical case, only

asymptotic dependence (or complete independence) may arise and all coefficients aji contribute to

the corresponding tail dependence coefficient χ.

3.2 Asymptotic Dependence

Here we show that X = (X1, X2) defined via (4) is asymptotically dependent when (6) holds,

and we give the explicit expression of its tail dependence coefficient. All proofs are given in the

Appendix.

Proposition 3.1. Let Y1, . . . , Yn be a sequence of random variables satisfying the condition A.1

with F̄Y ∈ Lβ for some β > 0, and let X = (X1, X2) be constructed as in (4). If the set equality

in (6) holds, then X1 and X2 are asymptotically dependent and the tail dependence coefficient of

X can be expressed as

χ = E

[
min

{
exp(βZ1)

MZ1(β)
,
exp(βZ2)

MZ2(β)

}]
where Z1 =

∑
i/∈Imax

a1iYi/a1max, Z2 =
∑

i/∈Imax
a2iYi/a2max, and MZj is the moment generating

function of Zj , j = 1, 2. Here the index set Imax is the common set of maximizers in (6) and

ajmax = maxi=1,...,n aji, j = 1, 2.

In this asymptotically dependent case where (6) holds, there is a link between our discrete model

(4) and the random scale constructions considered in Huser & Wadsworth (2019) and Engelke et al.

(2019). As shown in the proof of Proposition 3.1, we can assume without loss of generality that

a1max = a2max = 1. We can then rewrite model (4) as X1 = Zc + Z1 and X2 = Zc + Z2, where
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Zc =
∑

i∈Imax
Yi, and Z1 and Z2 are the same as in Proposition 3.1. Further notice that Zc has

an exponential tail if and only if exp(Zc) has a regularly varying tail. Hence, if one is interested

in the extremal dependence structure of the random vector (exp(X1), exp(X2)), which is the same

as that of (X1, X2) since extremal dependence is invariant to monotonically increasing marginal

transformations, then this problem falls into the setting of random scale constructions. More

precisely, we have (exp(X1), exp(X2)) = exp(Zc)(exp(Z1), exp(Z2)) with exp(Zc) being the shared

random component. An application of Proposition 1 in Engelke et al. (2019) yields the asymptotic

dependence of (exp(X1), exp(X2)) and thus also (X1, X2), and gives the same tail dependence

coefficient as in Proposition 3.1. This alternative proof transforms the sum of exponential-tailed

random variables into a product of regularly varying random variables and exploits the properties

of regularly varying functions to derive the extremal dependence structure. In comparison, our

proof in Proposition 3.1 treats linear transformations of a vector of independent exponential-tailed

random variables in a direct manner and reveals many asymptotic properties of exponential-tailed

distribution functions. This might be of independent interest and these results could be useful in

other contexts.

To further investigate the expression of the tail dependence coefficient χ in Proposition 3.1, we

now consider the specific example where the Yi are GH distributed. Suppose Y1, Y2 ∼ GH(λ, τ, ψ, µ, γ)

with ψ > 0, γ = 0, then Appendix E shows that their densities and survival functions have expo-

nential tails with the same index, i.e., fYi , F̄Yi ∈ L√
ψ. Proposition 3.1 yields the following result.

Example 1. Let Y1, Y2 be independent and have a common distribution GH(λ, τ, ψ, µ, γ) with ψ >

0, γ = 0. Let X1 = Y1 + a12Y2, X2 = Y1 + a22Y2 with 0 ≤ a12, a22 < 1. Then (X1, X2) is

asymptotically dependent with tail dependence coefficient

χ =

∫
(a22−a12)y≤c exp(a22

√
ψy)FY1(dy)

MY1(a22
√
ψ)

+

∫
(a22−a12)y>c exp(a12

√
ψy)FY1(dy)

MY1(a12
√
ψ)

,

where c = {logMY1(a22
√
ψ) − logMY1(a12

√
ψ)}/

√
ψ, and MY1 is the moment generating function

of Y1.

Clearly, the tail dependence coefficient χ in Example 1 is larger than zero. Also note that when

a12 = a22, X1 = X2 and thus χ = 1. In fact, one can show that when a12 ̸= a22, χ is always

strictly less than 1; see Proposition E.1 in Appendix E. To further investigate the properties of
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Figure 2: Values of χ as a function of a22 for fixed a12 = 0.3 and parameters τ = 1, ψ = 1, λ =
−0.5, 1, 5, 30 (left), λ = 1, ψ = 1, τ = 0.5, 1, 5, 30 (center), and λ = 1, τ = 1, ψ = 0.5, 1, 5, 30 (right)
in Example 1, where lines in each plot are ordered from highest to lowest for increasing values of
λ, τ and ψ, respectively.

the tail dependence coefficient χ expressed in Example 1, we now assume 0 ≤ a12 < a22 < 1 and

examine its limit as a22 ↑ 1. This is interesting because in the following subsection we see that when

a12 < 1 < a22, which implies argmaxi∈{1,2} a1i = 1 and argmaxi∈{1,2} a2i = 2, then X1 and X2 are

asymptotically independent and necessarily χ = 0. Hence, the investigation of lima22↑1 χ answers

the question of whether χ smoothly transitions from asymptotic dependence to independence. It

turns out that this is true only in some cases.

Proposition 3.2. Let χ be as in Example 1 with 0 ≤ a12 < a22 < 1. Then

lim
a22↑1

χ =


∫ c∗
−∞ exp(

√
ψy)FY1

(dy)

MY1
(
√
ψ)

+
∫∞
c∗ exp(a12

√
ψy)FY1

(dy)

MY1
(a12

√
ψ)

, if λ < 0,

0, if λ ≥ 0,

where c∗ = lima22↑1 c/(a22 − a12) =
log{MY1

(
√
ψ)}−log{MY1

(a12
√
ψ}

(1−a12)
√
ψ

<∞ when λ < 0.

The result in Proposition 3.2 indicates that when λ < 0, which implies that the distributions of

Y1, Y2 are convolution tail equivalent (Pakes, 2004), there is a discontinuity in χ when a22 tends to 1

from below. To illustrate how fast the χ coefficient in Example 1 tends to its limit, we set a12 = 0.3,

and plot χ against a22 for various values of λ, τ, ψ in Figure 2. The results show that λ is the most

important parameter that regulates the decay rate of χ as a22 increases, and the larger λ the faster

χ decays. This indicates that the normal inverse Gaussian distribution, which is a subclass of the

GH distribution when λ is fixed to −0.5, might not be a good option to use for modeling extreme

events in the presence of both asymptotic dependence and independence, since there is no smooth
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transition between the two. On the other hand, the variance gamma distribution, another subclass

of the GH distribution with λ > 0, might be a better candidate to consider as there is a smooth

transition.

3.3 Asymptotic Independence

In this section we show that X defined in (4) is asymptotically independent when (7) holds. We

further give the explicit expression of the residual tail dependence coefficient η; recall its definition

(3) in the introduction.

The idea of this proof is to first expand the bivariate random vector X to n dimensions, then

use the geometric approach (Nolde, 2014; Nolde & Wadsworth, 2022) to cast the computation

of the residual tail dependence coefficient η as a convex optimization problem, and finally solve

this optimization problem. We refer to the Supplementary Material (Section 1) for the proof and

additional related results.

Proposition 3.3. Let Y1, . . . , Yn be a sequence of random variables satisfying A.1 and A.2. Let

X = (X1, X2) be constructed as in (4). Then the residual tail dependence coefficient is

η =
[

min
i,j=1,...,n

i ̸=j

{ |ã2i − ã1i|+ |ã2j − ã1j |
|ã2iã1j − ã1iã2j |

,max(1/ã1i, 1/ã2i),max(1/ã1j , 1/ã2j)
}]−1

,

where ãji = aji/(maxr∈{1,...,n} ajr), j = 1, 2, i = 1, . . . , n, and the first term in the minimum is set

to +∞ whenever ã2iã1j − ã1iã2j = 0. Moreover, if (7) holds then η < 1, and necessarily X1 and

X2 are asymptotically independent. If (7) does not hold, then η = 1.

We remark that when (7) does not hold, more assumptions are needed to determine the extremal

dependence regime of X, i.e., whether the tail dependence coefficient χ > 0 or χ = 0; we refer to

Section 3.2 for the asymptotic dependence case and Section 3.4 for the boundary case.

We now consider the specific case that is similar to Example 1 and where a direct application

of Proposition 3.3 yields a simple form of η.

Example 2. Let Y1, Y2 be independent and have a common distribution GH(λ, τ, ψ, µ, γ) with

ψ > 0, γ = 0. Let X1 = Y1 + a12Y2, X2 = a21Y1 + Y2 with 0 ≤ a12, a21 ≤ 1. Then, the resid-
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ual tail dependence coefficient of X = (X1, X2) is

η =
1− a12a21

2− a12 − a21
.

Furthermore, if a12, a21 are both strictly less than 1, then X is asymptotically independent.

An interesting observation in Proposition 3.3 and Example 2 is that the expression of η only

depends on the coefficients aji. In other words, this means that as long as we do not change the

coefficients aji in the model (4) and Y1, . . . , Yn satisfy conditions A.1 and A.2, then we always obtain

the same residual tail dependence coefficient η, regardless of coefficient β or the exact distribution of

Yi. Another observation of Example 2 is that if we fix a12 (or a21), then η is monotonically increasing

with respect to a21 (or a12). Furthermore, the range of η is [1/2, 1], where 1/2 is achieved when

a12 = a21 = 0, and η = 1 when a12 = 1 or a21 = 1.

We now consider another example that clearly distinguishes the extremal dependence measures

from dependence measures for the bulk of the distribution.

Example 3. Let Y1, . . . , Yn be independent and identically distributed with common distribution

function FY and F̄Y ∈ Lβ, β > 0. Let X1 = Y1, X2 = a21Y1 + Y2 + a23Y3 + · · ·+ a2nYn with

0 ≤ a21, a23, . . . , a2n < 1. Then by Proposition 3.3, X = (X1, X2) is asymptotically independent

with residual tail dependence coefficient η = 1/(2− a21).

We observe that the expression of η does not depend on n, i.e., the number of independent terms

in the construction of X2. Loosely speaking, when more independent terms a2iYi with 0 < a2i < 1

are added to X2, these added terms do not contribute much to the extremal dependence between

X1 and X2 and the residual tail dependence coefficient remains the same. This is in clear contrast

with the classical Pearson’s correlation dependence measure

Corr(X1, X2) = a21

(
a221 + 1 +

n∑
i=3

a22i

)−1/2
,

which decreases monotonically as n increases.
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3.4 Boundary Case and Further Remarks

In Sections 3.2 and 3.3 we have shown that the discrete model X in (4) is asymptotically dependent

or independent when (6) or (7) hold, respectively. The intuition for this phenomenon is that the

extremal dependence of (X1, X2) is determined by whether the main contribution for the tails of X1

and X2 comes from the same components Yi. If this is the case, then the stronger form of extremal

dependence, namely asymptotic dependence, is achieved; otherwise, asymptotic independence is

obtained. In the sequel, let Ij = argmaxi∈{1,...,n} aji, j = 1, 2.

Clearly, there is a boundary case where neither (6) nor (7) hold, that is, we have I1 ̸= I2 and

Imax := I1 ∩ I2 ̸= ∅.

To avoid complications, we here only consider the case where I1 ̸⊂ I2 and I2 ̸⊂ I1. With the

notation of Proposition 3.1 and the paragraph thereafter, without losing generality, we assume

that a1max = a2max = 1, and recall that we can write (X1, X2) = Zc + (Z1, Z2), or equivalently,

(exp(X1), exp(X2)) = exp(Zc)(exp(Z1), exp(Z2)). Theorem 3 in Embrechts & Goldie (1980) now

implies that the survival functions of exp(Zc), exp(Z1), and exp(Z2) are all regularly varying with

the same index −β. Hence, Proposition 6 in Engelke et al. (2019) can be applied to determine

the extremal dependence structure of (X1, X2). More precisely, in this case, the residual tail

dependence coefficient of (X1, X2) is η = 1 (this can also be obtained using Proposition 3.3), but

more assumptions are needed to determine whether χ > 0 or χ = 0. We leave the other boundary

case Imax ̸= ∅, I1 ⊂ I2, or vice versa, for future research.

Here we have studied the extremal dependence structure of linear transformations, or sums

of exponential-tailed random vectors. The results are directly applicable to products of regularly

varying random vectors. Indeed, assume that Ȳ1, . . . , Ȳn are independent copies of a positive random

variable Y with absolutely continuous distribution function FȲ , and F̄Ȳ ∈ RV −β with β > 0. Let

aji ≥ 0 for j = 1, 2, i = 1, . . . , n. Then the product model

 X̄1 = Ȳ a11
1 · · · Ȳ a1n

n ,

X̄2 = Ȳ a21
1 · · · Ȳ a2n

n ,
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has the same extremal dependence structure as the sum model (4) with Yi = log(Ȳi), and Proposi-

tions 3.1 and 3.3 give the extremal dependence coefficients of (X̄1, X̄2).

We here restrict our attention in (4) to the case with non-negative coefficients aji, because

both the integral approximation of moving average processes and the finite element approximation

of the type G SPDE Matérn fields have non-negative coefficients; see Section 4 for more details.

Consequently, the residual tail dependence coefficient η in Proposition 3.3 can be shown to have the

lower bound 1/2, which implies that only positive extremal association can be achieved. However,

if the interest lies in capturing negative extremal association, i.e., η < 1/2, then one can achieve

this by considering negative coefficients aji and assuming that both the left and right tails of the

distribution of Yi have exponential decays. We leave this for future research.

4 Moving Average Processes

4.1 Main Results

We now focus on the extremal dependence structure of moving average processes (1). Note that

here u(s) refers to the usual definition of stochastic integrals, where in the first step one defines

integrals of simple functions, and then a non-random integrand function G is called M-integrable

if there exists a sequence of simple functions that converges pointwise to G, such that the limit

in probability of the resulting integrals of simple functions exists, and this limit is defined to be

the stochastic integral with respect to G (Rajput & Rosinski, 1989). A useful characterization of

M-integrable functions is given in Rajput & Rosinski (1989, Theorem 2.7). Throughout the paper

we assume that u(s) is well defined, i.e., G is M-integrable.

We first consider the more commonly used case where the domain of integration D is fixed

and does not depend on s. To consider a framework that is applicable to general moving average

processes which are not necessarily SPDEs, we only assume that:

B.1 the function G(h) is non-negative, continuous and strictly decreasing as h→ ∞;

B.2 for any bounded Borel set B ⊂ D, the random variable M(B) has an absolutely continuous

distribution function FM(B) with exponential tail F̄M(B) ∈ Lβ, β > 0.

We note that for the important class of type G Matérn SPDE random fields on Rd, the function
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G is non-negative, absolutely continuous, and monotonically decreasing (see Proposition E.2 in

Appendix E). Assumption B.2 implies that M(B) has an exponential-tailed distribution with the

same index for every bounded Borel set B. This seemingly restrictive assumption is, in fact, a

natural result of the convolution-closure property of exponential tails (Embrechts & Goldie, 1980,

Theorem 3), and Assumption B.2 is satisfied for instance for the NIG Matérn SPDE fields and the

variance Gamma Matérn SPDE fields considered in Bolin (2014), Wallin & Bolin (2015) and Bolin

& Wallin (2020).

We now assume that d = 2, which is the most important case for spatial applications; the cases

d = 1 and d ≥ 3 can be treated analogously. Let {Dn : Dn ⊂ D} be an increasing sequence of

bounded Borel sets in R2, and D1
n, D

2
n, . . . , D

J
n ⊂ Dn be a partition of Dn obtained by triangulating

Dn with mn mesh nodes Mn = {ain, i = 1, . . . ,mn}. Then we obtain an approximation of u(s) as

un(s) =

∫
D

J∑
i=1

G(∥s− di∥)1Di
n
(t)M(dt) =

J∑
i=1

G(∥s− di∥)M(Di
n), (8)

where di ∈ Di
n, and 1Di

n
is the indicator function. We say that the sequence of points Mn is dense

in D if for any point s ∈ D, there is a sequence {ān}, ān ∈Mn such that limn→∞ ∥ān − s∥ = 0. As-

sume thatMn is dense. Clearly, for any fixed s ∈ D, functionGJn(∥s− t∥) =
∑J

i=1G(∥s− di∥)1Di
n
(t)

converges to the function G(∥s− t∥) pointwise as mn → ∞. Hence, by the definition of stochastic

integrals, we know that un(s) converges to u(s) in probability. It follows that (un(s1), un(s2)),

s1 ̸= s2, converges in probability to (u(s1), u(s2)).

Furthermore, by Assumption B.2, F̄M(Di
n)

∈ Lβ. Note also that M(Di
n), i = 1, . . . , J , are

independent since {Di
n, i = 1, . . . , J} forms a partition of Dn. Hence, to understand the extremal

dependence structure of (un(s1), un(s2)), it is sufficient to focus on the coefficients G(∥s1 − di∥)

and G(∥s2 − di∥). Since s1 ̸= s2, we know that if the mesh is fine enough, s1 and s2 will fall into

different triangles Di1
n and Di2

n . Consequently, we have

argmax
i

G(∥s1 − di∥) = i1 ̸= argmax
i

G(∥s2 − di∥) = i2.

Proposition 3.3 then yields the asymptotic independence of (un(s1), un(s2)) and allows the com-

putation of its residual tail dependence coefficient. We focus on the limit of the residual tail
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dependence coefficient of the approximation model (un(s1), un(s2)) as mn → ∞.

Theorem 4.1. Let un(s) be the integral approximation of the moving average process (1), and let

ηn(h) be the residual tail dependence coefficient of (un(s1), un(s2)) for h = ∥s1 − s2∥. If Assump-

tions B.1 and B.2 are satisfied and the function G is convex, then if mn → ∞ and the sequence of

mesh nodes Mn is dense in D, the limit of ηn as n→ ∞ is

η(h) =
1

2
+

G(h)

2G(0)
.

The idea of our proof is to use Proposition 3.3 to obtain an explicit formula for ηn(h) as a

minimum (or maximum) over a finite number of terms, and with this, to show that for convex G,

the optimum can be achieved as the mesh size tends to zero. We remark that when G(0) = ∞, η(h)

reduces to a constant 1/2. When the function G is non-convex, we conjecture that the limiting

residual tail dependence function is

η(h) = max
{1

2
+

G(h)

2G(0)
,
G(h/2)

G(0)

}
.

Our simulation studies in Section 4.3 seem to support our conjecture, but a rigorous proof would

have to use a different technique than the proof of Theorem 4.1, which relies heavily on the convexity

of G.

We now consider another important case where the integration domain D depends on s, namely

when d = 1 and

u(s) =

∫ s

−∞
G(s− t)M(dt), s ∈ (−∞, T ]. (9)

This is an interesting case because it is used in practice (Barndorff-Nielsen & Shephard, 2001;

Ver Hoef & Peterson, 2010), and this one-sided integral turns out to yield different residual tail

dependence functions.

Let −n < s1 < s2 ≤ T and −n = t0 < · · · < tn1 ≤ s1 < · · · ≤ tn2 ≤ s2 < · · · < tmn = T be an

arbitrary partition of [−n, T ]. Then the approximation (8) becomes

un(s1) =

n1−1∑
i=0

G(s1 − ti)M([ti, ti+1)), un(s2) =

n2−1∑
i=0

G(s2 − ti)M([ti, ti+1)). (10)
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Clearly when mn → ∞ such that the sequence of partition points Mn = {ti, i = 0, . . . ,mn} is dense

in (−∞, T ], (un(s1), un(s2)) converges in probability to (u(s1), u(s2)). Note that when the mesh is

coarse and there is no partition point in (s1, s2), i.e., tn1 = tn2 , then the largest coefficients in the

expressions of un(s1) and un(s2) are G(s1− tn1−1) and G(s2− tn1−1) respectively, which correspond

to the same variable M([tn1−1, tn1)). Hence, Proposition 3.1 gives the asymptotic dependence of

(un(t1), un(t2)). Otherwise, when there is at least one partition point in (s1, s2), (un(t1), un(t2)) is

asymptotically independent, and in the following, we derive its limiting residual tail dependence

function as the mesh size tends to zero.

Theorem 4.2. Let un(s) be the integral approximation (10) of the one-side integral (9), and let

ηn(h) be the residual tail dependence coefficient of (un(s1), un(s2)) for h = |s1 − s2|. If Assump-

tions B.1 and B.2 are satisfied, then if mn → ∞ and the sequence of mesh nodes Mn is dense in

D, the limit of ηn as n→ ∞ is

η(h) =
1

2−G(h)/G(0)
.

4.2 Non-Gaussian Ornstein-Uhlenbeck (OU) Process

As the first application of the general results of the previous section, here we study the extremal

dependence structure of non-Gaussian OU processes u(t) (Barndorff-Nielsen & Shephard, 2001),

defined as the stationary solution to the stochastic differential equation (SDE)

du(t) = −au(t)dt+ dz(at), a > 0, t ∈ R, (11)

where z = {z(t) : t ∈ R} is a Lévy process satisfying E[log{1 + |z(1)|}] < ∞ to guarantee the

existence of such a stationary solution. Although the background driving Lévy process z can be

chosen arbitrarily, examples considered in Barndorff-Nielsen & Shephard (2001) all have exponential

tails for the density of the Lévy measure of z(1).

Non-Gaussian OU processes are generalizations of classical OU processes by replacing the Brow-

nian motion z(t) in the SDE (11) by general Lévy processes. The existence of such processes is

established based on the notion of self-decomposability and the stochastic integral representa-

tion of self-decomposable random variables (Jurek & Vervaat, 1983). More precisely, let V be

a self-decomposable random variable (namely for every α ∈ (0, 1), we have the decomposition
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V = αV + Ṽα, where Ṽα is a random variable independent of V ), then there exists a Lévy process

z(t) and a stationary stochastic process u(s) such that (11) holds for all a > 0 and u(s) has the

same distribution as V for all s ≥ 0. Conversely, if z is a Lévy process and u(t) is a stationary

stochastic process such that u(s) satisfying (11) for all a > 0, then the marginal distribution of

u(s) is self-decomposable. We refer to Jurek & Vervaat (1983) and Barndorff-Nielsen & Shephard

(2001) for more details.

Importantly, the solution to the SDE (11) can be represented as

u(s) =

∫ s

−∞
e−a(s−t)dz(at) = e−asu(0) +

∫ s

0
e−a(s−t)dz(at), s ≥ 0, (12)

where u(0) is independent of
∫ s
0 e

−a(s−t)dz(at). Using this representation, we can show that if the

stationary solution u(s) has an absolutely continuous and exponential-tailed distribution F with

F̄ ∈ Lβ, β > 0, then the process u(s) is asymptotically independent.

Theorem 4.3. Let u(s) be a non-Gaussian OU process defined as a stationary solution to (11) and

V has the stationary self-decomposable distribution. If the distribution function of V is absolutely

continuous with exponential tail F̄V ∈ Lβ, β > 0, then (u(s1), u(s2)) is asymptotically independent

for s1 ̸= s2. The corresponding residual tail dependence coefficient is

η =
1

2− e−a|s2−s1|
.

Note that when the Lévy process z in (11) is a Brownian motion, we obtain the classical Gaussian

OU process with the correlation between u(s1) and u(s2) as e
−a|s2−s1| and residual tail dependence

coefficient as (1 + e−a|s2−s1|)/2. Theorem 4.3 shows that when the marginal distribution of the

non-Gaussian OU process u(s) has an exponential tail, its induced extremal dependence structure

is indeed different from the classical Gaussian OU process, although its correlation function remains

the same. More precisely, using a first-order Taylor expansion, one can observe that as |s2 − s1|

tends to zero, the residual tail dependence coefficient η of the Gaussian OU process increases to 1

at a linear rate a/2, whilst η of the non-Gaussian OU process increases to 1 at a linear rate a.

Instead of specifying the self-decomposable distribution function of u(s), one can alternatively

define the non-Gaussian OU process by specifying the background driving Lévy process z, which
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reduces to specifying the distribution of z(1). Although the relationship between the tail of z(1) and

that of u(t) is unclear, u(t) and z(1) are closely linked by their Lévy measures Uu and Uz(1) through

the equation Uu([x,∞)) =
∫∞
1 s−1Uz(1)([sx,∞))ds (Barndorff-Nielsen, 1998, Theorem 2.2). Using

this link, we show in the following that under mild assumptions, a convolution equivalent tail of

z(1) implies a convolution equivalent tail for u(t).

Proposition 4.4. Denote the distribution function of z(1) and u(t) by Fz(1) and Fu, respectively.

Suppose that the function Uz(1)([x,∞)) is continuous in x on (0,∞). If F̄z(1) ∈ Sβ, β ≥ 0, then

F̄u ∈ Sβ. Moreover, F̄z(t) ∈ Sβ, where Fz(t) denotes the distribution function of z(t). Hence, all

increments of the Lévy process z(t) have exponential-tailed distribution functions with the same

index β.

One example is given by Uz(1)([x,∞)) = cx−ϵ exp(−βx), where ϵ > 1 and c, β > 0; see Example

2.4.1 in Barndorff-Nielsen & Shephard (2001). The restriction ϵ > 1 implies that the normalized

Lévy measure of z(1) is convolution tail equivalent and hence F̄z(1) ∈ Sβ (Shimura & Watanabe,

2005, Theorem B).

Now we assume that z(1) has a convolution tail equivalent distribution Fz(1) with F̄z(1) ∈ Sβ,

β > 0, the function Uz(1)([x,∞)) is continuous in x on (0,∞), and the distribution function of z(t)

is absolutely continuous for all t. That is, Assumption B.2 is satisfied. Then we are ready to link

our results in Theorem 4.2 and Theorem 4.3.

Clearly, for the OU processes, the integrand function in (12) satisfies Assumption B.1. Hence,

Theorem 4.2 implies that the limiting residual tail dependence function of the approximation model

of the form (10) is η(h) = 1/(2− e−ah). On the other hand, the convolution equivalent tail of z(1)

implies a convolution equivalent tail for u(s). If we further assume that the stationary distribution

of u(s) is absolutely continuous, then Theorem 4.3 gives its residual tail dependence function as

η(h) = 1/(2 − e−ah), which coincides with the limit of its approximation model. In Figure 3, we

illustrate this convergence of the residual tail dependence coefficient η of the approximating model

to the true non-Gaussian OU process for a = 0.2, s1 = 0, T = 4, and three equidistant partitions

of the interval [0, T ] with mesh length ∆ = 0.4, 0.2, 0.05.

The preceding analysis seemingly indicates that the extremal dependence structure is preserved

in the limit for convergent (in probability) random vectors. It is however important to note that in
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Figure 3: The residual tail dependence coefficient η of the true non-Gaussian OU process (black
line), and its integral approximations for three different, equidistant partitions of [0, T ] with mesh
length ∆ ∈ {0.4, 0.2, 0.05}, where the lines are ordered from highest to lowest for decreasing ∆.

general, convergence in probability or even almost surely does not (!) necessarily imply convergence

of the corresponding tail dependence coefficients, as shown in the following counterexample.

Example 4. Let X1,n = X/n + ϵ1, X2,n = X/n + ϵ2, where X, ϵ1, ϵ2 are independent, X has

a regularly varying survival function F̄X ∈ RV ρ, and ϵi, i = 1, 2 are standard normal random

variables. It is straightforward to see that (X1,n, X2,n) converges almost surely to the limiting

random vector (ϵ1, ϵ2). However, the extremal dependence is clearly not preserved in the limit,

since by Proposition 4 in Engelke et al. (2019) we know that for any finite n, (X1,n, X2,n) is

asymptotically dependent with tail dependence coefficient χ = 1, whilst (ϵ1, ϵ2) is asymptotically

independent with residual tail dependence coefficient η = 1/2.

4.3 Type G Matérn SPDE Random Fields

The second application of our general results is the popular class of type G Matérn SPDE random

fields defined as the stationary solution to the SPDE

(κ2 −∆)α/2u(s) = Ṁ(s), s ∈ Rd, (13)

where α = ν + d/2, d = 1, 2, . . . is the dimension, ν > 0 is the smoothness parameter, κ > 0 is the

range parameter, ∆ is the Laplacian and Ṁ is the so-called type G Lévy noise (Rosinski, 1991).
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The solution u(s) can be expressed as process convolutions

u(s) =

∫
Rd

G(∥s− t∥)M(dt), s ∈ Rd, (14)

where M is the random measure associated with the noise Ṁ, and G is the Green’s function of

the differential operator in (13) of the form

G(∥s− t∥) = 21−
α−d
2

(4π)d/2Γ(α/2)κα−d
(κ∥s− t∥)

α−d
2 Kα−d

2
(κ∥s− t∥), (15)

with Γ being the gamma function and K being the modified Bessel function of the second kind.

Notably, for the important class of type G Matérn SPDE random fields, the function G is

absolutely continuous and monotonically decreasing (see Proposition E.2 in Appendix E). This

implies that Assumption B.1 is satisfied. Moreover, Assumption B.2 is satisfied for the NIG Matérn

SPDE fields and variance Gamma Matérn SPDE fields considered in Bolin (2014), Wallin & Bolin

(2015), and Bolin & Wallin (2020). Hence, if we consider its integral approximation of the form (8),

Theorem 4.1 gives the limiting residual tail dependence function for convex G.

We remark that for d = 2, the specific Green’s function G in (15) is convex only when α ≤ 3

and G(0) is bounded when α > 2. This implies that when α = 2, which is the case commonly used

in practice, if the constructed mesh is very fine, then the resulting discrete approximation model

would have η ≈ 1/2 (near independence) between all pairs of locations, regardless of the distance

between them. From a practical point of view, this indicates that the case α = 2 might not be

suitable for modeling extremal dependence, whilst α = 3 might be more useful. We also remark

that the frequently used finite element approximation is in the form of linear transformations as

well, and more details are given in Appendix C.

We conduct simulations to illustrate our results. We consider the NIG Matérn SPDE model

with range parameter κ = 2, smoothness parameter α = 2, and NIG noise location parameter

µ = −1, skewness parameter γ = 1, and shape parameters ψ = τ = 1. We first consider its

finite element approximation and examine the convergence of the pre-asymptotic tail dependence

coefficient χ(q) as q → 1. We randomly select 100 sites in the unit square and consider a fine

mesh constructed based on a 1600-node lattice with outer extensions; see the left panel of Figure 4.
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Figure 4: Left panel: constructed mesh and selected pairs of sites with different distances (triangle
points to the round point) in the first simulation study in Section 4.3; right panel: empirical tail
dependence coefficient χ(q) for different probability levels q, of the finite element approximation of
the NIG Matérn SPDE model. Four pairs of locations with different distances are plotted, with
the lines ordered from top to bottom for increasing distances.

Then we simulate 5 ∗ 107 observations at each site, and compute the empirical tail dependence

coefficient χ(q) with respect to different probability levels u. Figure 4 (right panel) shows χ(q) for

four different pairs of locations with different distances. The plot indicates that the two pairs with

longer distances are asymptotically independent and also depicts the decay rate of χ(q) as q → 1.

The other two pairs with shorter distances are also asymptotically independent by Proposition 3.3,

but their corresponding χ(q) decays at a much slower rate and much more simulations are needed

to show that its limit is zero.

We now compare the integral approximation with the finite element approximation and examine

the effect of the smoothness parameter α on the extremal dependence structure of the approxima-

tion models. We choose the same SPDE range parameter, NIG noise parameters and the fine mesh

constructed based on 1600 lattice nodes as in the first simulation, and consider more sites, namely

225 randomly selected sites in the unit square, and smoothness parameter α = 2, . . . , 5. We numer-

ically compute the residual tail dependence coefficient η of all pairs of sites for both approximations

using the formula from Proposition 3.3.

Figure 5 depicts η against the distance between all pairs of sites. A first observation is that

with such a fine mesh the difference between the integral approximation and the finite element
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Figure 5: Coefficients η for the finite element approximation (light-grey triangle points) and integral
approximation (dark-grey round points) of the type G Matérn SPDE model based on a fine mesh,
and the functions 1/2 +G(h)/{2G(0)} (black solid line) and G(h/2)/G(0) (black dashed line).

approximation is negligible. When α = 2, i.e., the function G in (15) is convex but unbounded

at 0, the residual tail dependence function η(h) is still fairly far from its limiting function (as the

mesh size tends to 0), which is η(h) ≡ 1/2. On the other hand, when α = 3, i.e., G is convex and

bounded at 0, then the function η(h) of both approximation models has almost converged to its

limiting function. While the cases α = 4, 5 are not covered by our theory since G is nonconvex,

the η values of the approximation models seem to converge to our conjectured limiting function,

namely η(h) = max{1/2 +G(h)/{2G(0)}, G(h/2)/G(0)}. This provides numerical evidence for our

conjecture.

5 Conclusion

Linear transformations of a random vector with independent components are classical construc-

tions to capture complex correlation dependence structures due to their simplicity and analytical

tractability. For instance, the approximation models used in practice in the well-known SPDE

approach (Lindgren et al., 2011; Bolin, 2014) are of this form. In this paper, we derived the first

results on the extremal dependence structure induced by such constructions when the indepen-

dent components have exponential tails. These general results are leveraged to study the extremal

dependence structure of moving average processes driven by exponential-tailed Lévy noise. In par-

ticular, the classical exponential-tailed non-Gaussian OU processes are shown to be asymptotically

independent, but with a different residual tail dependence function than their Gaussian counter-

part. As for the type G Matérn random fields, or more general moving average processes, we have
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shown that under certain assumptions on the kernel function and the noise process, the integral ap-

proximation is asymptotically independent when the mesh is fine enough and the limiting residual

tail dependence function is derived.

In terms of statistical modeling, linear transformations of exponential-tailed random vectors

have the potential to bridge asymptotic dependence and independence in a tractable way, and

models with such features are in pursuit in the extremes community (Nolde & Zhou, 2021). In

fact, this desirable property distinguishes them from other marginal distributions. For instance,

linear combinations of heavy-tailed random variables can only result in asymptotic dependence or

complete independence. On the other hand, linear transformations of Gaussian random vectors

exclusively yield asymptotic independence or complete dependence. Therefore an interesting and

natural question is whether exponential tails are the only ones that can exhibit both extremal

dependence classes under linear transformations.
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Appendix A Lemmas and Proofs for Section 3

Before proving Proposition 3.1, we first present three useful lemmas as follows. The first one

concerns the asymptotic expansion of the quantile of an exponential-tailed distribution function,

the second states how much the quantile changes in the limit when an exponential-tailed random

variable convolves an independent lighter-tailed random variable, and the third one can be thought

of as a more generalized definition of exponential-tailed functions.

Lemma 1. Let Y be a random variable with distribution function FY such that F̄Y ∈ Lβ, β > 0,

then we have the asymptotic expansion of its quantile function

F−1
Y (u) ∼ − log(1− u)

β
, u ↑ 1.
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Proof. Using the representation (5), we have

F̄Y (x) = a(x) exp
{
−
∫ x

0
β(v)dv

}
,

where a(x) → a ∈ (0,∞) and β(x) → β as x→ ∞. Now consider the function y(u) = − log(1− u)/β,

0 < u < 1. We have

y(FY (x)) = − log{F̄Y (x)}
β

=
− log{a(x)}+

∫ x
0 β(v)dv

β
∼ x, x→ ∞.

Furthermore,

y(FY (F
−1
Y (u))) = −

log{F̄Y (F−1
Y (u)}

β
∼ − log(1− u)

β
, u ↑ 1,

where the last step is due to the fact that F̄ (F−1(u)) ∼ 1 − u and that the logarithm function

is slowly varying and thus preserves asymptotic equivalence (see Proposition 2.6 (iii) of Resnick

(2007) or Section 3.4 of Buldygin et al. (2018) for a more detailed treatment). Therefore, combining

these two above results gives F−1
Y (u) ∼ − log(1−u)

β as u ↑ 1, and the proof is complete.

Lemma 2. Let Y be a random variable with distribution function FY such that F̄Y ∈ Lβ, β > 0.

Let Z1, Z2 be random variables independent of Y and have moment generating functions MZi such

that MZi(γ) <∞ for some γ > β. Then for X1 = Y + Z1, X2 = Y + Z2, we have

c1 := lim
u↑1

{F−1
X1

(u)− F−1
Y (u)} =

1

β
log{MZ1(β)},

c2 := lim
u↑1

{F−1
X2

(u)− F−1
Y (u)} =

1

β
log{MZ2(β)},

c3 := lim
u↑1

{F−1
X2

(u)− F−1
X1

(u)} = c2 − c1,

where FX1 , FX2 are the distribution functions of X1 and X2, respectively.

Proof. By Lemma 1 in Cline (1986) or Proposition 3 in Breiman (1965), we have that F̄X1 , F̄X2 ∈ Lβ

and

lim
x→∞

F̄X1(x)

F̄Y (x)
=MZ1(β), lim

x→∞

F̄X2(x)

F̄Y (x)
=MZ1(β).
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Using the representation (5), we have

F̄X1(x) ∼MZ1(β)F̄Y (x) ∼MZ1(β)a(x) exp
{
−
∫ x

0
β(v)dv

}
, x→ ∞.

Since F̄Y (F
−1
Y (u)) ∼ 1− u ∼ F̄X1(F

−1
X1

(u)) as u tends to 1, we have that as u ↑ 1,

a(F−1
Y (u)) exp

{
−
∫ F−1

Y (u)

0
β(v)dv

}
∼MZ1(β)a(F

−1
X1

(u)) exp
{
−
∫ F−1

X1
(u)

0
β(v)dv

}
.

As F̄Y , F̄X1 ∈ Lβ, using Lemma 1 we know that

F−1
Y (u) ∼ F−1

X1
(u) ∼ − log(1− u)

β
, u ↑ 1.

The fact a(x) → a ∈ (0,∞) implies that the function a(·) is slowly varying and thus it preserves

asymptotic equivalence. That is, a(F−1
Y (u)) ∼ a(F−1

X1
(u)), as u ↑ 1. Hence,

MZ1(β) exp
{
−
∫ F−1

X1
(u)

F−1
Y (u)

β(v)dv
}
→ 1, u ↑ 1.

By dominated convergence, we have

MZ1(β) exp[−β lim
u↑1

{F−1
X1

(u)− F−1
Y (u)}] = 1.

Therefore, rearranging the terms gives

c1 = lim
u↑1

{F−1
X1

(u)− F−1
Y (u)} =

1

β
log{MZ1(β)}.

Similarly, we get c2 = log{MZ2(β)}/β, and

c3 = lim
u↑1

{F−1
X2

(u)− F−1
X1

(u)} = lim
u↑1

[{F−1
X2

(u)− F−1
Y (u)} − {F−1

X1
(u)− F−1

Y (u)}] = c2 − c1.

Lemma 3. Let F be a distribution function such that F̄ ∈ Lβ, β ≥ 0. Suppose g1, g2 are two real-

valued functions on R that satisfy g1(u) → ∞, g2(u) → ∞, g1(u)/g2(u) → 1, and g1(u)− g2(u) → g
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with g ∈ (−∞,∞) as u→ u0, then

lim
u→u0

F̄ (g1(u))

F̄ (g2(u))
= exp(−gβ).

Proof. Since F̄ ∈ Lβ, we know that F̄ (t) has the representation (5). Using the same argument as in

Lemma 2, we know that a(·) preserves asymptotic equivalence. Thus, a(g1(u)) ∼ a(g2(u)), u→ u0

and we further have

lim
u→u0

F̄ (g1(u))

F̄ (g2(u))
= lim

u→u0

a(g1(u))

a(g2(u))
exp

{
−
∫ g1(u)

g2(u)
β(v)dv

}
= lim

u→u0
exp

{
−
∫ g1(u)

g2(u)
β(v)dv

}
= exp(−gβ),

where the last equality holds by dominated convergence theorem. This completes the proof.

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. Note that extremal dependence is a copula property, i.e., it is invariant to

strictly increasing marginal transformations. This implies that, X̃ = (X̃1, X̃2)
⊤ with X̃1 = X1/a1max,

X̃2 = X2/a2max, will have the same extremal dependence structure as X. Hence, without losing

generality we assume that a1max = a2max = 1 and 0 ≤ aji ≤ 1, j = 1, 2, i = 1, . . . , n. We thus

have Z1 =
∑

i/∈Imax
a1iYi, Z2 =

∑
i/∈Imax

a2iYi. Denote Zc =
∑

i∈Imax
Yi, then X1 = Zc + Z1 and

X2 = Zc + Z2.

In order to derive the tail dependence coefficient χ, we need to compare the following probability

with 1− u as u ↑ 1

I := Pr
(
X1 > F−1

X1
(u), X2 > F−1

X2
(u)

)
= Pr

(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u)

)
= Pr

(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u), Z2 − Z1 ≤ F−1

X2
(u)− F−1

X1
(u)

)
+

Pr
(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u), Z2 − Z1 > F−1

X2
(u)− F−1

X1
(u)

)
.

For Zj =
∑

i/∈Imax
ajiYi, j = 1, 2, if aji = 0 for all i /∈ Imax, then Zj = 0 and clearly its moment
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generating function satisfiesMZj (t) = 1 <∞. If there is at least one aji > 0 for some i /∈ Imax, then

by Theorem 3 in Embrechts & Goldie (1980), we know that Zc has exponential-tailed distribution

function with index β, and Zj has the distribution function FZj with F̄Zj ∈ Lβ/maxi/∈Imax aji
. Hence,

Zj has a lighter exponential tail than Zc and there exists γ > β such that MZi(γ) <∞. Therefore,

the conditions in Lemma 2 are satisfied.

Since Zc + Z2 > F−1
X2

(u) and Z2 − Z1 ≤ F−1
X2

(u) − F−1
X1

(u) imply Zc + Z1 > F−1
X1

(u), we have

that

{Zc + Z2 > F−1
X2

(u), Z2 − Z1 ≤ F−1
X2

(u)− F−1
X1

(u)} ⊆ {Zc + Z1 > F−1
X1

(u)}.

Hence,

lim
u↑1

Pr
(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u), Z2 − Z1 ≤ F−1

X2
(u)− F−1

X1
(u)

)
Pr

(
Zc > F−1

Zc
(u)

)
= lim

u↑1

Pr
(
Zc + Z2 > F−1

X2
(u), Z2 − Z1 ≤ F−1

X2
(u)− F−1

X1
(u)

)
Pr

(
Zc > F−1

Zc
(u)

)
= lim

u↑1

∫ ∫
z2−z1≤F−1

X2
(u)−F−1

X1
(u)

Pr
(
Zc > F−1

X2
(u)− z2

)
Pr

(
Zc > F−1

Zc
(u)

) FZ(dz1,dz2)

=

∫ ∫
z2−z1≤c3

exp(βz2 − c2)FZ(dz1, dz2),

where the last equality holds due to Lemma 2, Lemma 3, and dominated convergence theorem.

Similarly, we have

lim
u↑1

Pr
(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u), Z2 − Z1 > F−1

X2
(u)− F−1

X1
(u)

)
Pr

(
Zc > F−1

Zc
(u)

)
=

∫ ∫
z2−z1>c3

exp(βz1 − c1)FZ(dz1, dz2).
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Therefore,

χ = lim
u↑1

I

1− u

= lim
u↑1

Pr
(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u), Z2 − Z1 ≤ F−1

X2
(u)− F−1

X1
(u)

)
Pr

(
Zc > F−1

Zc
(u)

) +

lim
u↑1

Pr
(
Zc + Z1 > F−1

X1
(u), Zc + Z2 > F−1

X2
(u), Z2 − Z1 > F−1

X2
(u)− F−1

X1
(u)

)
Pr

(
Zc > F−1

Zc
(u)

)
=

∫ ∫
z2−z1≤c3

exp(βz2 − c2)FZ(d, z1dz2) +

∫ ∫
z2−z1>c3

exp(βz1 − c1)FZ(dz1, dz2)

=

∫ ∫
z2−z1>c3 exp(βz1)FZ(dz1, dz2)

MZ1(β)
+

∫ ∫
z2−z1≤c3 exp(βz2)FZ(dz1,dz2)

MZ2(β)

= E[min{exp(βZ1)/MZ1(β), exp(βZ2)/MZ2(β)}].

We now prove Proposition 3.2.

Proof of Proposition 3.2. For Y1 ∼ GH(λ, τ, ψ, µ = 0, γ = 0), from Section 2 we know that its

density function fY1(y) has asymptotic expansion

fY1(y) ∼ c0y
λ−1e−

√
ψy, y → ∞,

where c0 > 0 is a constant. It can be easily seen that its moment generating function MY1(t)

evaluated at point t =
√
ψ is finite if λ < 0, but is infinite if λ ≥ 0. Hence, if λ < 0, we have

lim
a22↑1

χ =

∫ c∗
−∞ exp(

√
ψy)FY1(dy)

MY1(
√
ψ)

+

∫∞
c∗ exp(a12

√
ψy)FY1(dy)

MY1(a12
√
ψ)

.

If λ ≥ 0, we know that lima22↑1MY1(a22
√
ψ) = ∞ and thus lima22↑1 c = ∞. Hence, the second

term in the expression of χ in Example 1 vanishes. We now show the first term tends to zero as

a22 ↑ 1. Since fY1(y) ∼ c0y
λ−1e−

√
ψy, y → ∞, we have for any ε > 0, there exists N > 0 such that
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fY1(y) < (1 + ε)c0y
λ−1e−

√
ψy for every y > N . Hence, for λ > 0

∫ c/(a22−a12)
−∞ exp(a22

√
ψy)FY1(dy)

MY1(a22
√
ψ)

=

∫ c/(a22−a12)
−∞ exp(a22

√
ψy)fY1(y)dy

MY1(a22
√
ψ)

<

∫ N
−∞ exp(a22

√
ψy)fY1(y)dy

MY1(a22
√
ψ)

+

∫ c/(a22−a12)
N (1 + ε)cyλ−1 exp{−(1− a22)

√
ψy}dy

MY1(a22
√
ψ)

<
exp(a22

√
ψN)

∫ N
−∞ fY1(y)dy

MY1(a22
√
ψ)

+

∫ c/(a22−a12)
N (1 + ε)cyλ−1dy

MY1(a22
√
ψ)

=
exp(a22

√
ψN)FY1(N)

MY1(a22
√
ψ)

+
(1 + ε)c[{c/(a22 − a12)}λ −Nλ]/λ

MY1(a22
√
ψ)

. (16)

Substituting c by c =
log{MY1

(a22
√
ψ)}−log{MY1

(a12
√
ψ)}√

ψ
, one can easily see that (16) tends to zero as

a22 ↑ 1. Hence, we have

0 ≤ lim inf
a22↑1

∫ c/(a22−a12)
−∞ exp(a22

√
ψy)FY1(dy)

MY1(a22
√
ψ)

≤ lim sup
a22↑1

∫ c/(a22−a12)
−∞ exp(a22

√
ψy)FY1(dy)

MY1(a22
√
ψ)

= 0,

and thus lima22↑1

∫ c/(a22−a12)
−∞ exp(a22

√
ψy)FY1

(dy)

MY1
(a22

√
ψ)

= 0. Note that for λ = 0, we only need to change the

term (cλ − Nλ)/λ in (16) to (log c − logN) and the same conclusion holds. Therefore, for λ ≥ 0,

we have lima22↑1 χ = 0. This completes the proof.

We now present four useful lemmas which are needed for proving Proposition 3.3. The former

three concern the analytical solution to a certain convex optimization problem, while the last one

presents some properties of the density function of an exponential-tailed distribution function.

Lemma 4. For n ≥ 3, let gn(x1, x2) be the minimizer of the following unconstrained optimization

problem

gn(x1, x2) = min
x3,...,xn

∣∣∣a22x1 − a12x2 + (a12a23 − a13a22)x3 + · · ·+ (a12a2n − a1na22)xn
a11a22 − a12a21

∣∣∣+∣∣∣−a21x1 + a11x2 + (a21a13 − a23a11)x3 + · · ·+ (a21a1n − a2na11)xn
a11a22 − a12a21

∣∣∣+ n∑
i=3

|xi|

with a11a22−a12a21 ̸= 0, and a21i+a
2
2i ̸= 0, i = 1, . . . , n. Then gn(x1, x2) can be expressed explicitly
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as

gn(x1, x2) = min
i,j=1,...,n

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

.

Proof. We prove the statement by induction. Denote the objective function in gn(x1, x2) as

hn(x1, . . . , xn). For n = 3, we have

g3(x1, x2) = min
x3

h3(x1, x2, x3) = min
x3

|a22x1 − a12x2 + (a12a23 − a13a22)x3|
|a11a22 − a12a21|

+

| − a21x1 + a11x2 + (a21a13 − a23a11)x3|
|a11a22 − a12a21|

+ |x3|.

Note that if we fix x1, x2, then one can partition the real line R into four parts (two rays and

two segments) such that the objective function h3 is linear in each part. Obviously the minimizer

cannot be achieved when x3 = ±∞. Hence, it must be achieved at the boundary of one of these

segments. That is, if a12a23 − a13a22 ̸= 0 and a21a13 − a23a11 ̸= 0, then

g3(x1, x2) = min
{
h3(x1, x2, 0), h3

(
x1, x2,

a22x1 − a12x2
a22a13 − a12a23

)
, h3

(
x1, x2,

a21x1 − a11x2
a21a13 − a11a23

)}
.

Clearly, h3(x1, x2, 0) = (|a22x1 − a12x2|+ |a21x1 − a11x2|)/|a22a11 − a12a21|. Furthermore,

h3

(
x1, x2,

a22x1 − a12x2
a22a13 − a12a23

)
=

| − a21x1 + a11x2 +
(a22x1−a12x2)(a21a13−a23a11)

a22a13−a12a23 |
|a11a22 − a12a21|

+
∣∣∣ a22x1 − a12x2
a22a13 − a12a23

∣∣∣
=

∣∣∣ a23x1 − a13x2
a22a13 − a12a23

∣∣∣+ ∣∣∣ a22x1 − a12x2
a22a13 − a12a23

∣∣∣.
Similarly, we have

h3

(
x1, x2,

a21x1 − a11x2
a21a13 − a11a23

)
=

∣∣∣ a23x1 − a13x2
a13a21 − a11a23

∣∣∣+ ∣∣∣ a21x1 − a11x2
a13a21 − a11a23

∣∣∣.
Hence,

g3(x1, x2) = min
i,j=1,2,3
i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

.

If a12a23−a13a22 = 0 and a21a13−a23a11 = 0, the above statement clearly also holds. If only one

of them is zero, without loss of generality we assume a12a23 − a13a22 ̸= 0 and a21a13 − a23a11 = 0.

Since a211 + a221 ̸= 0, a213 + a223 ̸= 0, we further assume a11 ̸= 0, a13 ̸= 0 without losing generality.
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Then a21 = a23a11/a13, g3(x1, x2) = min
{
h3(x1, x2, 0), h3

(
x1, x2,

a22x1−a12x2
a22a13−a12a23

)}
, and

h3

(
x1, x2,

a22x1 − a12x2
a22a13 − a12a23

)
=

| − a21x1 + a11x2|
|a11a22 − a12a21|

+
∣∣∣ a22x1 − a12x2
a22a13 − a12a23

∣∣∣
=

∣∣∣ a23a11x1/a13 − a11x2
a11a22 − a12a23a11/a13

∣∣∣+ ∣∣∣ a22x1 − a12x2
a22a13 − a12a23

∣∣∣
=

|a23x1 − a13x2|+ |a22x1 − a12x2|
|a22a13 − a12a23|

.

Hence, the statement g3(x1, x2) = mini,j=1,2,3
i ̸=j

|a2ix1−a1ix2|+|a2jx1−a1jx2|
|a2ia1j−a1ia2j | also holds in this case. Above

all, we have shown that

g3(x1, x2) = min
i,j=1,2,3
i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

.

Now we assume that gn(x1, x2) = mini,j=1,...,n
i ̸=j

|a2ix1−a1ix2|+|a2jx1−a1jx2|
|a2ia1j−a1ia2j | holds for some n ≥ 3 and

consider the case n+1. Since there is no constraint in our optimization problem (thus the constraints

are independent), we can minimize the function hn+1 by first minimizing over some variables, and

then minimizing over the remaining variables; see Section 4.1.3 of Boyd & Vandenberghe (2004)

for more details. Hence,

gn+1(x1, x2) = min
x3,...,xn+1

hn+1(x1, . . . , xn+1) = min
x3,...,xn

min
xn+1

hn+1(x1, . . . , xn+1).

Then using the same arguments as n = 3, if a12a2(n+1) − a1(n+1)a22 ̸= 0, a21a1(n+1) − a2(n+1)a11 ̸= 0,
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we have

gn+1(x1, x2) = min
x3,...,xn

min
{
hn+1(x1, . . . , xn, 0),

hn+1

(
x1, . . . , xn,

a22x1 − a12x2 +
∑n

i=3(a12a2i − a1ia22)xi
a1(n+1)a22 − a12a2(n+1)

)
,

hn+1

(
x1, . . . , xn,

a21x1 − a11x2 +
∑n

i=3(a11a2i − a1ia21)xi
a1(n+1)a21 − a11a2(n+1)

)}
= min

{
min

x3,...,xn
hn+1(x1, . . . , xn, 0),

min
x3,...,xn

hn+1

(
x1, . . . , xn,

a22x1 − a12x2 +
∑n

i=3(a12a2i − a1ia22)xi
a1(n+1)a22 − a12a2(n+1)

)
,

min
x3,...,xn

hn+1

(
x1, . . . , xn,

a21x1 − a11x2 +
∑n

i=3(a11a2i − a1ia21)xi
a1(n+1)a21 − a11a2(n+1)

)}
.

Note that minx3,...,xn hn+1(x1, . . . , xn, 0) = minx3,...,xn hn(x1, . . . , xn) = gn(x1, x2), and

min
x3,...,xn

hn+1

(
x1, . . . , xn,

a22x1 − a12x2 +
∑n

i=3(a12a2i − a1ia22)xi
a1(n+1)a22 − a12a2(n+1)

)
= min
x3,...,xn

∣∣∣−a21x1 + a11x2 +
∑n

i=1(a21a1i − a2ia11)xi +
a21a1(n+1)−a2(n+1)a11
a1(n+1)a22−a12a2(n+1)

{a22x1 − a12x2+

a11a22 − a12a21∑n
i=3(a12a2i − a1ia22)xi}
a11a22 − a12a21

∣∣∣+ n∑
i=3

|xi|+
∣∣∣a22x1 − a12x2 +

∑n
i=3(a12a2i − a1ia22)xi

a1(n+1)a22 − a12a2(n+1)

∣∣∣
= min
x3,...,xn

∣∣∣a2(n+1)x1 − a1(n+1)x2 +
∑n

i=3(a1(n+1)a2i − a1ia2(n+1))xi

a1(n+1)a22 − a12a2(n+1)

∣∣∣+ n∑
i=3

|xi|+∣∣∣a22x1 − a12x2 +
∑n

i=3(a12a2i − a1ia22)xi
a1(n+1)a22 − a12a2(n+1)

∣∣∣,
which is equal to gn(x1, x2) if we replace the coefficients a11, a21 in gn(x1, x2) with a1(n+1) and

a2(n+1), respectively. Hence,

min
x3,...,xn

hn+1

(
x1, . . . , xn,

a22x1 − a12x2 +
∑n

i=3(a12a2i − a1ia22)xi
a1(n+1)a22 − a12a2(n+1)

)
= min
i,j=2,...,n+1

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

.
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Similarly, we have

min
x3,...,xn

hn+1

(
x1, . . . , xn,

a21x1 − a11x2 +
∑n

i=3(a11a2i − a1ia21)xi
a1(n+1)a21 − a11a2(n+1)

)
= min
i,j=1,3,...,n+1

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

.

Above all,

gn+1(x1, x2) = min
{

min
i,j=1,...,n

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

,

min
i,j=2,...,n+1

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

, min
i,j=1,3,...,n+1

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

}
= min

i,j=1,...,n+1
i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

.

If a12a2(n+1) − a1(n+1)a22 = a21a1(n+1) − a2(n+1)a11 = 0 or only one of them is zero, it is

straightforward to show that the above statement also holds by using the argument as in the case

n = 3. Therefore, the proof is complete.

Lemma 5. Let a, b, c, d ∈ [0,∞) with ad− bc ̸= 0, and f(x1, x2) =
|ax1−bx2|+|cx1−dx2|

|ad−bc| , then we have

min
x1≥1,x2≥1

f(x1, x2) = min
{
max(1/a, 1/b),max(1/c, 1/d),

|a− b|+ |c− d|
|ad− bc|

}
.

Proof. Since one can always partition R2 into four subregions such that the function f(x1, x2)

is linear in each subregion, we know that the minimizer of this function on [1,∞)2 can only be

achieved at the intersection of one subregion and [1,∞)2. That is, if a ≤ b, c ≤ d, then

min
x1≥1,x2≥1

f(x1, x2) = min{f(1, 1), f(b/a, 1), f(d/c, 1)}

= min
{ |a− b|+ |c− d|

|ad− bc|
, 1/a, 1/c

}
= min

{ |a− b|+ |c− d|
|ad− bc|

,max(1/a, 1/b),max(1/c, 1/d)
}
.
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Similarly, for b ≤ a, c ≤ d, or a ≤ b, d ≤ c, or b ≤ a, d ≤ c, we also obtain

min
x1≥1,x2≥1

f(x1, x2) = min
{ |a− b|+ |c− d|

|ad− bc|
,max(1/a, 1/b),max(1/c, 1/d)

}
.

Therefore, above all, the conclusion always holds.

Lemma 6. Let a, b, c, d ∈ [0, 1] with ad− bc ̸= 0, ab < 1 and cd < 1, then

|a− b|+ |c− d|
|ad− bc|

> 1.

Proof. Since ad− bc ̸= 0, we know that a− b and c− d cannot be both equal to zero. Hence,

|ad− bc| = |ad− ac+ ac− bc| ≤ a|c− d|+ c|a− b| < |c− d|+ |a− b|,

where the last inequality is due to the fact that ab < 1 and cd < 1, which means that a and b cannot

be both equal to 1, and c and d cannot be both equal to 1. This implies that |a−b|+|c−d|
|ad−bc| > 1.

Lemma 7. Let Y be a random variable with distribution function FY such that F̄Y ∈ Lβ, β > 0.

If FY is absolutely continuous with density function fY , then we have the asymptotic relationship

log F̄Y (x) ∼ log fY (x) ∼ −βx, x→ ∞.

Proof. Since F̄Y ∈ Lβ, using L’Hôpital’s rule, we know that fY ∈ Lβ. Now suppose that

g : R → R+ is an exponential-tailed function with index β, i.e., g ∈ Lβ. Using the representa-

tion (5), we have

g(x) = a(x) exp
{
−
∫ x

0
β(v)dv

}
,

where a(x) → a ∈ (0,∞) and β(x) → β as x → ∞. The fact β(x) → β implies that β(·) is slowly

regularly. By Karamata’s theorem (see Theorem 2.1 in Resnick (2007)), we have that

∫ x

0
β(v)dv ∼ βx, x→ ∞.
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Hence,

log g(x) = log a(x)−
∫ x

0
β(v)dv ∼ −

∫ x

0
β(v)dv ∼ −βx, x→ ∞.

Since both fY and F̄Y have exponential tails with index β, we have the asymptotic expansion

log F̄Y (x) ∼ log fY (x) ∼ −βx, x→ ∞.

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. If (6), then clearly η = 1, which coincides with the result in Proposi-

tion 3.1. Otherwise, without losing generality we assume that a11 = maxi∈{1,...,n} a1i and a22 =

maxi∈{1,...,n} a2i. Since extremal dependence is a copula property, (X1/a11, X2/a22) has the same

extremal dependence structure as X. Hence, we can further assume that a11 = a22 = 1 and

0 ≤ aji ≤ 1, j = 1, 2, i = 1, . . . , n. Since argmaxi∈{1,...,n} a1i ∩ argmaxi∈{1,...,n} a2i = ∅, we know

that a1ia2i < 1.

The strategy for this proof relies on augmenting the model X1 = Y1 + a12Y2 + · · ·+ a1nYn,

X2 = a21Y1 + Y2 + a23Y3 + · · ·+ a2nYn in the following way



X1 = Y1 + a12Y2 + · · ·+ a1nYn,

X2 = a21Y1 + Y2 + a23Y3 + · · ·+ a2nYn,

X3 = Y3,

...

Xn = Yn.

Since Yi, i = 1, . . . , n are independent and have common distribution function F̄Y ∈ Lβ, by Theorem

3 in Embrechts & Goldie (1980), we know that F̄Xi ∈ Lβ, i = 1, . . . , n. Using Lemma 7, we have

1− FXi(x) = e−h(x), h(x) ∼ βx, as x→ ∞.
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Now for the square matrix

A =



1 a12 a13 · · · a1n

a21 1 a23 · · · a2n

1

. . .

1


∈ Rn×n,

it can be shown that its determinant is |A| = 1− a12a21, and its inverse is

A−1 =
1

1− a12a21



1 −a12 a12a23 − a13 · · · a12a2n − a1n

−a21 1 a21a13 − a23 · · · a21a1n − a2n

1− a12a21
. . .

1− a12a21


.

Denote X = (X1, X2)
T , X̃ = (X1, . . . , Xn)

T and the probability density function of X̃ as fX̃ .

Then we have

lim
t→∞

− log fX̃(tx)

h(t)
= lim

t→∞

βt(|αT
1 x|+ · · ·+ |αT

nx|)
βt

= |αT
1 x|+ · · ·+ |αT

nx|

=: g̃(x),

where αi, i = 1, . . . , n are the ith row vector of the matrix A−1. By Proposition 2 in Nolde

& Wadsworth (2022), a sequence of scaled random samples Nn = {X̃1/rn, . . . , X̃n/rn} from fX̃

converges in probability onto a limit set G̃ with G̃ = {x ∈ Rd : g̃(x) ≤ 1}. Then using Proposition

4 in Nolde & Wadsworth (2022) we know that, for X, which is a two-dimensional subvector of X̃,

sample clouds from X converge onto the limit set G = {x1, x2 ∈ R : g(x1, x2) ≤ 1} with gauge

function

g(x1, x2) = min
x3,...,xn

g̃(x).

37



Therefore, by Proposition 8 in Nolde & Wadsworth (2022), we have

η−1 = min
x1,x2≥1

g(x1, x2)

= min
x1,x2≥1

min
x3,...,xn

|x1 − a12x2 + (a12a23 − a13)x3 + · · ·+ (a12a2n − a1n)xn|
1− a12a21

+

|x2 − a21x1 + (a21a13 − a23)x3 + · · ·+ (a21a1n − a2n)xn)|
1− a12a21

+
n∑
i=3

|xi|.

Using Lemma 4 and 5, we have

η =
{

min
x1,x2≥1

min
i,j=1,...,n

i ̸=j

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

}−1

=
{

min
i,j=1,...,n

i ̸=j

min
x1,x2≥1

|a2ix1 − a1ix2|+ |a2jx1 − a1jx2|
|a2ia1j − a1ia2j |

}−1

=
[

min
i,j=1,...,n

i ̸=j

min
{ |a2i − a1i|+ |a2j − a1j |

|a2ia1j − a1ia2j |
,max(1/a1i, 1/a2i),max(1/a1j , 1/a2j)

}]−1
.

If (7), then by Lemma 6, we have η < 1 and thus X1 and X2 are asymptotically independent.

Notice that although we have assumed a11 = maxi∈{1,...,n} a1i and a22 = maxi∈{1,...,n} a2i at the

beginning of this proof, they are only needed to ensure that a11a22 − a12a21 ̸= 0, which implies

that the matrix A is nonsingular, and they do not affect the expression of η. Therefore, the proof

is complete.

Appendix B Proofs for Section 4

We first present the proof of Theorem 4.1.

Proof of Theorem 4.1. By Proposition 3.3, we know that the residual tail dependence coefficient of

(un(s1), un(s2))
⊤ is

ηn(s1, s2) = max
i,j∈{1,...,J},i ̸=j

{ |ã1iã2j − ã1j ã2i|
|ã1i − ã2i|+ |ã1j − ã2j |

, ã1i ∧ ã2i, ã1j ∧ ã2j
}
,

where ãri =
G(∥sr−di∥)

G(lr)
, r = 1, 2, i = 1, . . . , J and lr = mini∈{1,...,J} ∥sr − di∥. If l1 ̸= l2, say l1 < l2,

then one can add one or more mesh nodes close to s2 such that l1 = l′2 holds in the resulting mesh.
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Figure 6: Explaination for the derivation of the limiting η in the type G model.

So without loss of generality, we assume that l1 = l2 = l.

For fixed l > 0, it is clear that ã1i ∧ ã2i ≤ G(∥s1 − s2∥/2)/G(l), where the equality is achieved

when di is at the midpoint of s1 and s2, i.e., ∥s1 − di∥ = ∥s2 − di∥ = ∥s1 − s2∥/2. Since our

interest is in the case when l → 0, we assume that l is small and l < ∥s1− s2∥/2. We now focus on

the term
|ã1iã2j−ã1j ã2i|

|ã1i−ã2i|+|ã1j−ã2j | . Substitute ãri =
G(∥sr−di∥)

G(l) , and denote this term by f , i.e.,

f(d1,d2) =
|G(∥d1 − s1∥)G(∥d2 − s2∥)−G(∥d1 − s2∥)G(∥d2 − s1∥)|

|G(∥d1 − s1∥)−G(∥d1 − s2∥)|G(l) + |G(∥d2 − s1∥)−G(∥d2 − s2∥)|G(l)
.

Then we need to find the maximum of this function for d1,d2 ∈ R2 \ (B(s1, l) ∪ B(s2, l)), where

B(sr, l) = {x ∈ R2 : ∥x− sr∥ < l} is the open ball of radius l centered at sr.

Denote the line segment from s1 to s2 by LS(s1, s2), and its perpendicular bisector by PB(s1, s2).

If d1 ∈ PB(s1, s2) and d2 ∈ PB(s1, s2), then clearly the function f is not well-defined. By Propo-

sition 3.3 and the discussion followed, we know that these points can be neglected. If only one of

d1 and d2 is on the line PB(s1, s2), then we have f(d1,d2) = G(∥s1 − s2∥/2)/G(l).

For d1,d2 /∈ PB(s1, s2), without loss of generality we assume that d1 is closer to s1 than to

s2, i.e., ∥d1 − s1∥ < ∥d1 − s2∥, as shown in Figure 6. One can show that if d2 is also closer to s1

than to s2, then its symmetric point d̄2 about the line PB(s1, s2) satisfies f(d1, d̄2) ≥ f(d1,d2).
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This implies that to obtain the maximum of f , it is sufficient to consider points d1,d2 located on

the two sides of the line PB(s1, s2). Hence we can assume that d1 is closer to s1 than to s2, and

d2 is closer to s2 than to s1. Since G is strictly decreasing on [0,∞), the function f can then be

simplified to

f(d1,d2) =
G(∥d1 − s1∥)G(∥d2 − s2∥)−G(∥d1 − s2∥)G(∥d2 − s1∥)

{G(∥d1 − s1∥)−G(∥d1 − s2∥) +G(∥d2 − s1∥)−G(∥d2 − s2∥)}G(l)
.

Furthermore, due to the convexity of G, one can show that for d ∈ R2 \ (B(s1, l)∪B(s2, l)), the

range of the function |G(∥d− s1∥)−G(∥d− s2∥)| is [0, G(l)−G(∥s1 − s2∥ − l)] with its minimum

obtained on the line PB(s1, s2) and its maximum at the intersection points of the line passing

through s1 and s2 and the two circles with radius l centered at s1 and s2. Now if we fix the

point d1, then by the intermediate value theorem (Tao, 2016, Theorem 9.7.1), for any d2 such

that ∥d2 − s2∥ < ∥d2 − s1∥ and d2 /∈ B(s2, l), there always exists one point ¯̄d2 on the line segment

LS((s1 + s2)/2, s2) \ B(s2, l) such thatG(∥d2 − s1∥)−G(∥d2 − s2∥) = G(∥ ¯̄d2 − s1∥)−G(∥ ¯̄d2 − s2∥),

and G(∥ ¯̄d2 − si∥) ≥ G(∥d2 − si∥), i = 1, 2, which yields f(d1,
¯̄d2) ≥ f(d1,d2). Hence, it is sufficient

to consider only points d1 ∈ LS(s1, (s1 + s2)/2) \ B(s1, l) and d2 ∈ LS(s2, (s1 + s2)/2) \ B(s2, l),

and the optimization problem can be rewritten as

sup
x1,x2∈[l,h)

f̄(x1, x2) = sup
x1,x2∈[l,h)

G(x1)G(x2)−G(2h− x1)G(2h− x2)

{G(x1)−G(2h− x1) +G(x2)−G(2h− x2)}G(l)
.

Since G is absolutely continuous, we have the partial derivative of f̄ with respect to x1 as

∂f̄

∂x1
= a(x1, x2)[G

′(x1){G(x2)−G(2h− x2)} −G′(2h− x1){G(x1)−G(2h− x2)}],

where a(x1, x2) =
G(x2)−G(2h−x2)

{G(x1)−G(2h−x1)+G(x2)−G(2h−x2)}2G(l)
> 0. For x ∈ [l, h), due to the convexity of

G, we have that G′(x) ≤ G′(2h− x). Hence,

∂f̄

∂x1
≤ a(x1, x2)G

′(2h− x1){G(x2) +G(2h− x2)−G(x1)−G(2h− x1)}.

As G is monotonically decreasing, we know that G′(2h− x1) ≤ 0. Furthermore, the convexity of G

implies that the function g(x) = G(x)+G(2h−x) is monotonically decreasing on [l, h). Therefore,
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for fixed x2 ∈ [l, h), we know that if x1 ≥ x2, then
∂f̄
∂x1

≤ 0. This implies that

f̄(x1, x2) ≤ f̄(x2, x2) = {G(x2) +G(2h− x2)}/{2G(l)} ≤ {G(l) +G(2h− l)}/{2G(l)},

where the maximum is obtained when x1 = x2 = l.

Above all, we have that for d1,d2 ∈ R2 \ (B(s1, l) ∪ B(s2, l)),

f(d1,d2) ≤ max
{G(∥s1 − s2∥/2)

G(l)
,
G(l) +G(∥s1 − s2∥ − l)

2G(l)

}
= 1/2 +G(∥s1 − s2∥ − l)/G(l),

where the last equality holds due to the convexity of G, and the maximum of f is achieved when

d1,d2 are the intersection points of the line segment LS(s1, s2) and the two circles with radius l

centered at s1 and s2. Hence, as the mesh becomes finer and the set of mesh nodes Mn becomes

denser in D, which means that l → 0, the residual tail dependence function η(s1, s2) tends to

1/2 +G(∥s1 − s2∥)/G(0). This completes the proof.

We now prove Theorem 4.2.

Proof of Theorem 4.2. By Proposition 3.3, the residual tail dependence coefficient of the approxi-

mation (un(s1), un(s2)) of the form (10) is

η = max
i,j=0,...,n2−1,i ̸=j

{ |a2ia1j − a1ia2j |
|a2i − a1i|+ |a2j − a1j |

,min(a1i, a2i),min(a1j , a2j)
}
,

with a1i = G(s1 − ti)/G(s1 − tn1−1) for 0 ≤ i ≤ n1 − 1 and a1i = 0 for n1 ≤ i ≤ n2 − 1, and

a2i = G(s2 − ti)/G(s2 − tn2−1) for 0 ≤ i ≤ n2 − 1.

Since G is strictly decreasing, the sequence {a1i, 0 ≤ i ≤ n1 − 1} and {a2i, 0 ≤ i ≤ n2 − 1} are

strictly increasing. Hence, maxi=0,...,n2−1min(a1i, a2i) = a2(n1−1). For the first term inside the

maximum operation of the expression of η, we have

|a2ia1j − a1ia2j |
|a2i − a1i|+ |a2j − a1j |

≤ max(a1j , a2j)|a2i − a1i|
|a2i − a1i|+ |a2j − a1j |

=
max(a1j , a2j)

1 + |a2j − a1j |/|a2i − a1i|

≤ max(a1j , a2j)

1 + |a2j − a1j |
=

1

1 + {1−min(a1j , a2j)}/max(a1j , a2j)

≤ 1

2− a2(n1−1)
,
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where the equality is obtained when i = n2−1 and j = n1−1. Thus we have η for (un(s1), un(s2))
⊤

as

η = max
( 1

2− a2(n1−1)
, a2(n1−1)

)
=

1

2− a2(n1−1)
.

Therefore, as mn → ∞ and the set of mesh nodes Mn tries to fill up the space in D, we have

the limiting residual tail dependence function as 1/{2−G(h)/G(0)}.

Next, we prove Theorem 4.3.

Proof of Theorem 4.3. Without loss of generality we assume that 0 ≤ s1 < s2. The representation

(12) implies that u(s2) can be represented as the convolution of two independent random variables

u(s2) = e−a(s2−s1)u(s1) +

∫ s2

s1

e−a(s2−s)dz(at).

Since u(s) = V and F̄V ∈ Lβ, we know that u(s1), u(s2) have exponential tails with index β

and e−a(s2−s1)u(s1) has an exponential tail with index ea(s2−s1)β. Denote V1 = e−a(s2−s1)u(s1).

The self-decomposability of V1 yields its infinite divisibility, which further implies that the Wiener

condition is satisfied, i.e. MV1(β + it) ̸= 0, t ∈ R, where MV1 is the moment generating function of

V1; see Theorem 25.17 of (Sato, 1999) for more details. Then Lemma 2.5 in Pakes (2004) yields that∫ s2
s1
e−a(s2−s)dz(at) must have an exponential tail with index β. Therefore, the result in Proposition

3.3 and Example 2 gives the asymptotic independence between u(s1) and u(s2), and their residual

tail dependence coefficient is η = 1/(2− e−a(s2−s1)).

In the following we prove Proposition 4.4.

Proof of Proposition 4.4. By Sgibnev (1990) and Shimura & Watanabe (2005), we know that an

infinitely divisible distribution is convolution tail equivalent if and only if its normalized Lévy

measure is convolution tail equivalent. That is, for any t ∈ R,

F̄z(1) ∈ Sβ ⇔
1x>1Uz(1)([x,∞))

Uz(1)([1,∞))
∈ Sβ.

From Barndorff-Nielsen (1998) we know that if Uz(1)([x,∞)) is continuous in x on (0,∞)), then we
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have the relation Uu([x,∞)) =
∫∞
x s−1Uz(1)([s,∞))ds. Hence, for x > 1,

Uu([log x,∞)) =

∫ ∞

log x
s−1Uz(1)([s,∞))ds =

∫ ∞

x
Uz(1)([log t,∞))/(t log t)dt.

Since
1x>1Uz(1)([x,∞))

Uz(1)([1,∞)) ∈ Sβ, we have that Uz(1)([log t,∞)) ∈ RV −β, which further implies that

Uz(1)([log t,∞))/(t log t) ∈ RV −β−1. By Karamata’s theorem (cf. Theorem 2.1 in Resnick (2007)),

lim
x→∞

Uz(1)([log x,∞))/ log x∫∞
x Uz(1)([log t,∞))/(t log t)dt

= β.

Hence,

lim
x→∞

Uu([log x,∞))

Uz(1)([log t,∞))
= lim

x→∞

1

β log x
= 1/β.

Therefore, using Theorem 1 in Cline (1986), we have that 1x>1Uu([x,∞))
Uu([1,∞)) ∈ Sβ and thus F̄u ∈ Sβ.

Now we denote the Lévy measure of z(t) as Uz(t). Since Fz(1) ∈ Sβ, we know that
1x>0Uz(1)

Uz(1)([1,∞)) ∈ Sβ.

By the definition of Lévy process, we have Uz(t) = tUz(1), for any t > 0. Hence, using Theorem 1

in Cline (1986), we know that
1x>0Uz(t)([x,∞))

Uz(t)([1,∞)) ∈ Sβ and thus F̄z(t) ∈ Sβ.

Appendix C Finite Element Approximations

In this section we introduce the finite element approximation which is the key for efficient simulation

and inference of the type G Matérn fields (Bolin, 2014; Bolin & Wallin, 2020).

Similarly to the non-Gaussian OU processes, the type G Matérn SPDE random fields are an im-

portant extension of the well-known SPDE-based formulation of Gaussian random fields (Lindgren

et al., 2011), aiming to capture more flexible marginal behaviors, different sample path properties,

and non-Gaussian dependence structures. Specifically, the generalization from Gaussian white noise

to general Lévy noise in the SPDE (13) provides a natural way to construct non-Gaussian random

fields, while the differential operator (κ2 −∆)α/2 ensures the Matérn covariance for the resulting

processes.

The main advantage of the SPDE-based representation is that one can approximate its solution

by using the finite element method to achieve computationally efficient simulation and inference.

To make sense of the SPDE (13), one can think of M as a homogeneous Lévy basis, namely an
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infinitely divisible and independently scattered random measure, and interpret the Equation (13)

in a weak sense. That is, for a test function g in an appropriate space, we have

⟨g(s), (κ2 −∆)α/2u(s)⟩ =
∫
g(s)M(ds),

where the equality holds in distribution, and ⟨a(s), b(s)⟩ =
∫
a(s)b(s)ds. To approximate the

weak solution numerically efficiently, we consider a bounded domain D ∈ Rd and assume that the

operator (κ2 −∆)α/2 is equipped with suitable boundary conditions (Lindgren et al., 2011; Bolin,

2014). Then one can choose the space of the test functions to be the linear span of a finite number

of basis functions {ϕi, i = 1, . . . , n}. For instance, similarly as in Lindgren et al. (2011), ϕi can

be chosen as the commonly used piecewise linear basis functions induced by a triangulation of the

domain D. We then obtain a finite element approximation of the weak solution as

un(s) =

n∑
i=1

ωiϕi(s),

where the stochastic weights ω = (ω1, . . . , ωn)
⊤ satisfy

Kαω =
(∫

D
ϕ1(s)M(ds), . . . ,

∫
D
ϕn(s)M(ds)

)⊤
,

with Kα = C{C−1(κ2C +G)}α/2, and the matrices C,G ∈ Rn×n having elements Cij = ⟨ϕi, ϕj⟩D,

and Gij = ⟨∇ϕi,∇ϕj⟩D, respectively.

The random measure M is said to be of type G if M evaluated on the unit square [0, 1]d can

be represented as a normal mean-variance mixture, i.e., M([0, 1]d) = µ + γv +
√
vZ, where v is

a non-negative infinitely divisible random variable and Z is a Gaussian random variable. This

representation of the type G random measure admits a Gaussian distribution for ω conditioning

on the variance process v(s). By assuming that v is closed under convolution, the distribution of

ω can be approximated by

ω | v̄ ∼ N
(
K−1
α (µ+ γv̄),K−1

α diag(v̄)K−1
α

)
with v̄ = (v̄1, . . . , v̄n)

⊤ and v̄j =Mv(Dj), where Mv is the random measure associated with v, and
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Dj = {s : ϕj(s) ≥ ϕi(s),∀i ̸= j}. For the GIG distribution introduced in Section 2, the only two

subclasses which are closed under convolution are the Gamma distribution and the inverse Gaussian

distribution, which lead to the variance Gamma and normal inverse Gaussian random measures,

respectively, for M, and these are the two non-Gaussian SPDE models considered in Bolin (2014),

Wallin & Bolin (2015) and Bolin & Wallin (2020).

If v has an inverse Gaussian distribution, then v̄i, i = 1, . . . , n, are independent and inverse

Gaussian distributed, and have exponential tails with the same index. Consequently, the approxi-

mate weak solution un(s) can be rewritten as

un(s) = (ϕ1(s), . . . , ϕn(s))ω = (ϕ1(s), . . . , ϕn(s))K
−1
α Y , (17)

where Y = (Y1, . . . , Yn)
⊤, Yi, i = 1, . . . , n are independent and normal inverse Gaussian distributed,

and have exponential tails with the same index. If v has a Gamma distribution, then we have the

same representation as in (17) for the approximate weak solution, but with the difference that

Yi, i = 1, . . . , n have a variance Gamma distribution.

The preceding analysis shows that characterizing the extremal dependence of the finite element

approximation un(s) is equivalent to characterizing the extremal dependence of the random vector

X = (X1, X2)
⊤ constructed as in (4). From the results in Section 3 we know that the extremal de-

pendence between un(s1) and un(s2) depends on whether argmaxi=1,...,n{(ϕ1(s1), . . . , ϕn(s1))K−1
α }

is equal to argmaxi=1,...,n{(ϕ1(s2), . . . , ϕn(s2))K−1
α }. And for any given mesh and basis functions

{ϕi}, the residual tail dependence coefficient of the finite element approximation can be easily

computed using the formula in Proposition 3.3.

Appendix D Additional Simulation Studies

Here we examine the effect of different mesh constructions on the extremal dependence of the

induced finite element approximation of NIG Matérn SPDE models. We choose the same SPDE

parameters and NIG noise parameters as in the first simulation study in Section 4.3. As shown

in Figure 7, we randomly select 100 sites in the unit square and consider three different mesh

constructions covering the sites. The meshes are constructed based on lattices with outer extensions,

where meshes 1, 2, and 3 have 25, 100, and 625 lattice nodes, respectively. We then simulate 105
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Figure 7: Extremal dependence of the finite element approximations of the NIG Matérn SPDE
model with respect to different mesh constructions. Mesh 1, 2, and 3 are constructed on a lattice
with respective 25, 100, and 625 nodes. The empirical tail dependence coefficient χ(q) with different
q (green points: q = 0.95; blue points: q = 0.975; red points: q = 0.99) of the finite element
approximation model based on mesh 1, 2, and 3 are shown in the lower left, middle, and right
panels, respectively.

observations from the finite element approximation model and the lower panel in Figure 7 depicts

the empirical tail dependence coefficient of all pairs of sites with respect to different quantile levels

u = 0.95 (green points), 0.975 (blue points), and 0.99 (red points). This figure clearly illustrates

the nonstationarity induced by a coarse mesh (mesh 1 and 2), i.e., various values of χ(q) exist for

the same distance, but this nonstationarity tends to vanish as the mesh becomes finer. One can also

observe in the lower right panel that as the quantile level u increases to 1, χ(q) tends to decrease.

This seems to coincide with our theoretical findings of the integral approximation in Section 4.3,

whose limiting extremal dependence class is asymptotic independence and which necessarily implies

that χ = limq↑1 χ(q) = 0 for all pairs.

Appendix E Additional Results

Proposition E.1. Let χ be the tail dependence coefficient in Example 1. If a12 ̸= a22, then χ < 1.

Proof. Without loss of generality, we assume that 0 ≤ a12 < a22 < 1. To prove χ < 1, we first show
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that c > 0. Note that for 0 < t <
√
ψ, we have

M ′
Y1(t) =

∫ ∞

−∞
y exp(ty)FY1(dy)

=

∫ 0

−∞
y exp(ty)FY1(dy) +

∫ ∞

0
y exp(ty)FY1(dy)

>

∫ 0

−∞
yFY1(dy) +

∫ ∞

0
yFY1(dy) = 0,

where the last equality is due to the symmetry of the distribution GH(λ, τ, ψ, µ = 0, γ = 0). Hence,

c = {logMY1(a22
√
ψ)− logMY1(a12

√
ψ)}/

√
ψ > 0.

Therefore,

1− χ = 1−

∫
(a22−a12)y≤c exp(a22

√
ψy)FY1(dy)

MY1(a22
√
ψ)

−

∫
(a22−a12)y>c exp(a12

√
ψy)FY1(dy)

MY1(a12
√
ψ)

=

∫ ∞

c/(a22−a12)
e
√
ψa22y−logMY1

(a22
√
ψ) − e

√
ψa12y−logMY1

(a12
√
ψ)FY1(dy)

> 0,

where the last inequality holds since
√
ψa22y − logMY1(a22

√
ψ) >

√
ψa12y − logMY1(a12

√
ψ) for

y > c/(a22 − a12).

Proposition E.2. Let f(x) = xνKν(x), ν > 0, x > 0. Then f(x) is strictly decreasing on (0,∞).

Proof. Using the formula K ′
ν(x) = −{Kν−1(x) + Kν+1(x)}/2 (cf. Abramowitz & Stegun (1972),

formula 9.6.26) we have

f ′(x) = νxν−1Kν(x) + xν
{
− Kν−1(x) +Kν+1(x)

2

}
= xν−1 2νKν(x)− xKν−1(x)− xKν+1(x)

2
.

Since xKν+1(x) = xKν−1(x) + 2νKν(x) (cf. Abramowitz & Stegun (1972), formula 9.6.26), we

have

f ′(x) = xν−1 2νKν(x)− xKν−1(x)− xKν−1(x)− 2νKν(x)

2
= −xνKν−1(x) < 0.

Therefore, f(x) is strictly decreasing on (0,∞).
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We now give more details of the GH distribution. The Lebesgue density function of GH(λ, τ, ψ, µ, γ)

is

fGH(x) =
ψλ/2(ψ + γ2)1/2−λ

(2π)1/2τλ/2Kλ(
√
τψ)

·
Kλ−1/2

[√
{τ + (x− µ)2}(ψ + γ2)

]
eγ(x−µ)[√

{τ + (x− µ)2}(ψ + γ2)
]1/2−λ , x ∈ R.

To see why the GH density function also has exponential tails, using the asymptotic expansion of

the modified Bessel function of the second kind for large arguments (Abramowitz & Stegun, 1972,

Formula 9.7.2), we obtain

fGH(x) ∼ c0x
λ−1e−(

√
ψ+γ2−γ)x, x→ ∞,

where c0 > 0 is a constant, and f(x) ∼ g(x) as x → ∞ means that g is eventually non-zero and

f(x)/g(x) → 1 as x → ∞. A simple application of L’Hôpital’s rule gives that the GH distribution

functions also have exponential tails.
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