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Abstract
Indium oxide (In2O3) thin films sputtered at room temperature were annealed under different
atmospheres and examined for thin-film transistor (TFT) active channel applications. The
annealing process was performed in a rapid thermal annealing system at 350 ◦C under O2, Ar,
forming gas (FG, 96% N2/4% H2), and N2. It was found that the annealed In2O3 TFTs exhibited
high field-effect mobility (µFE > 40 cm2 V−1s−1), high on/off current ratio (Ion/off ∼ 108), and
controlled threshold voltage (VTH) for the enhancement- and depletion-mode operations. Note
that the annealing atmosphere has a significant effect on the electrical performance of the In2O3

TFTs by inducing changes in oxygen-related species, particularly oxygen vacancies (VO) and
hydroxyl/carbonate species (O–H/C–O). For the O2-, Ar-, FG-, and N2-annealed TFTs, µFE was
in increasing order accompanied by a negative shift in VTH, which is a result attributed to the
larger VO in the In2O3 thin films. Furthermore, the∆VTH of the FG-, and N2-annealed TFTs in a
positive bias stress test was greater than that of the O2-, Ar-annealed devices, attributing to their
lower density of O–H/C–O groups in the In2O3 thin films. Our results suggest that the annealing
atmosphere contributes to the internal modifications of the In2O3 structure and in turn altered
the electrical characteristics of TFTs. These annealed In2O3 TFTs with high performance are
promising candidates for realizing large-area, transparent, and high-resolution displays.
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1. Introduction

Wide-bandgap oxide semiconductors (OSs) are widely invest-
igated as promising channel layers of thin-film transist-
ors (TFTs) in display technology [1, 2], artificial synapses
[3], sensors [4], Schottky devices [5] and other applications
[6–8]. Among them, indium–gallium–zinc oxide (IGZO)
TFTs have become the backplane standard for active-
matrix liquid-crystal displays and active-matrix organic light-
emitting diode displays because of their reasonable mobility
(µFE > 10 cm2 V−1s−1), high Ion/off ratio (>108), extremely
low leakage current (<10−15 A), low process temperature
(<350 ◦C), high uniformity, and large-area scalability [9–11].
To meet the requirements of ultra-high-resolution and high
frame rate next-generation displays, various OS TFTs with
higher mobility than IGZO TFTs have been extensively stud-
ied for next-generation display applications [12–14]. Among
these transistors, In-rich OS TFTs are the most promising can-
didates because of their excellent high-mobility performance.
The In 5s orbital having a large spatial spread and a large over-
lap provides a facile electron transport path, which, in addition
to their low electron effective mass, endows In-rich OS TFTs
with high electron mobility [14].

For most OS TFTs, the presence of oxygen-related spe-
cies, such as oxygen vacancies (VO) or hydroxyl/carbonate
species (O–H/C–O), has a considerable impact on their elec-
trical performance [15, 16]. Generally, VO readily creates shal-
low or deep donor states in the oxide channel layer. These
shallow donor states supply electrons to the conduction band
(CB), leading to an increase in electron concentration. In con-
trast, the deep donor states in the subgap region act as trap
states, degrading device performance [17–19]. In addition,
oxygen bonds in O–H/C–O groups are considered to gener-
ate acceptor-like states near the CB edge and enhance elec-
tron trapping during positive bias stress (PBS) applications
[20]. Therefore, multiple attempts have been made to mod-
ulate oxygen-related species in the active channel layer such
as multi-cation doping [21, 22], changing the sputtering gas
flow [23], annealing treatment [24], plasma treatment [25], or
their combination [26, 27]. One of the effective routines for
realizing TFTs with good performance is the deposition of
OS channel layers with high resistivity, followed by a post-
deposition annealing treatment. Annealing is one of the most
commonly used methods for optimizing active channel layers
because of its effectiveness in alleviating deep traps formed by
ion bombardment or unintended defects during film deposition
or the synthesis process [28]. Most previous studies demon-
strated that the performance of TFTs under multiple anneal-
ing conditions varies depending on the channel material and
process conditions chosen [29, 30]. Different annealing condi-
tions, especially the annealing atmosphere, have a significant
effect on the performance of OS TFTs. However, most studies
on the effects of annealing conditions have focused on IGZO
[31], indium–gallium–tin oxide (IGTO) [29], indium–zinc–
tin oxide (IZTO) [32], indium-gallium oxide [33], and other
In-based multi-cation composition OSs [34, 35]. Few studies
have been conducted on the effect of the annealing atmosphere

on the performance of In2O3 TFTs. Yuan et al reported that the
sputtered In2O3 TFTs followed by a post-deposition anneal-
ing in vacuum or air showed significantly different mobil-
ities; however, the fundamental mechanism behind the car-
rier mobility enhancement is unclear [36]. Si et al reported
that In2O3 TFTs deposited by atomic layer deposition (ALD)
and annealed in O2, H2, or N2 respectively, produced sim-
ilar results indicating that the annealing atmosphere had no
effect on the performance of In2O3 TFTs [37]. However, ALD-
processed and sputtered In2O3 thin films significantly differ in
terms of aspects such as chemical composition and bonding
state [38, 39]. Therefore, this conclusion cannot be inferred to
be applicable to sputtered In2O3 TFTs. For OS TFTs, a com-
plete understanding of the effects of the annealing atmospheres
on their electrical properties and stability is required. In par-
ticular, stability under gate bias stress is important for OS TFT
applications. This suggests the need to determine themost suit-
able annealing atmosphere for In2O3 thin films to improve the
electrical properties of In2O3 TFTs. In this study, we deposited
In2O3 thin films by sputtering at room temperature and invest-
igated the effect of the annealing atmosphere on the electrical
characteristics and bias stability of In2O3 TFTs.

2. Experimental details

The fabrication process of the devices is as follows. First,
heavily doped p-type silicon (p++-Si) substrates with 2 µm
thermally grown SiO2 were cleaned with acetone, isopropyl
alcohol, and deionized water for 10 min each. Next, 30 nm
Al was deposited using radio frequency (RF) magnetron sput-
tering as the gate metal. Then, 30 nm Al2O3 was grown as
the gate dielectric at 250 ◦C using (CH3)3Al (TMA) and O2

plasma as Al and O precursors. Next, ∼10 nm In2O3 films
were deposited by RF magnetron sputtering at room temperat-
ure as the active channel layer. In2O3 films with a thickness of
∼40 nmwere then deposited on the SiO2/Si substrates and sap-
phire substrates to examine their structural and optical proper-
ties. The sputtering power was 100 W, the O2 and Ar gas flow
ratios were set to 50%, and theworking pressure was 10mTorr.
About 5 min pre-sputtering was performed to eliminate the
contamination of the In2O3 target. Subsequently, 20 nm Ti
and 100 nm Au were deposited by RF magnetron sputtering
as the source and drain metal contacts, respectively. Finally,
the Al2O3 was dry-etched using BCl3 as the reactive gas to
expose the underlying gate. The bottom gate, channel, and
source/drain metals were fabricated by lithography, sputter-
ing and lift-off processes. The channel length and width were
40 and 240 µm, respectively. The annealing process was per-
formed in a rapid thermal annealing system under four differ-
ent annealing atmospheres of O2, Ar, forming gas (FG) and
N2. The annealing temperature and time were fixed at 350 ◦C
and 1 min, respectively.

The surface morphology was characterized using an atomic
force microscopy (AFM, Bruker Dimension Icon scanning
probemicroscope) in tappingmode. Film thicknesswas jointly
determined by transmission electronmicroscope (TEM), AFM
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Figure 1. (a) Schematic of an In2O3 transistor. (b) HAADF-STEM cross-sectional image with EDX elemental mapping of an O2-annealed
In2O3 transistor, and (c) the corresponding cross-sectional profiles of the elements, confirming that the thickness of In2O3 film is ∼10 nm.
(d) AFM image of the O2-annealed In2O3 thin film. (e) Distribution of surface roughness RMS values extracted from AFM images under
different annealing atmospheres. (f) XRD diffraction patterns of all annealed In2O3 thin films.

and ellipsometry. TEM lamella samples were prepared by
focused ion beam (FIB) using a FEI Helios G4 scanning elec-
tronmicroscope. Before FIBmilling, a platinum (Pt) layer was
deposited to protect the sample surface from ion damage. The
FEI Titan ST microscope system with an acceleration voltage
of 300 kV was equipped with a Super-X energy-dispersive
x-ray spectroscopy (EDX) for high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
imaging. Crystal structures were studied using a Bruker D2
PHASER x-ray diffraction (XRD) system with a Cu tube
source (λ= 1.541 84 Å) at 30 kV. O 1s spectra were examined
by x-ray photoelectron spectroscopy (XPS) was performed in
a high vacuum using a Kratos Amicus XPS system equipped
with a monochromatic Al Kα x-ray source operating at 10 kV.
The electrical properties and gate bias stability of the fabric-
ated TFTs were measured using a Keithley 4200 system and a
Cascade Summit probe station at room temperature and ambi-
ent atmosphere.

3. Results and discussion

Figure 1(a) shows a schematic of an In2O3 TFTwith a bottom-
gate-top-contact structure fabricated on a Si substrate. The
gate stack is structured with 30 nm Al as the bottom gate,
30 nmAl2O3 as the gate dielectric,∼10 nm In2O3 as the chan-
nel layer, and 20/100 nm Ti/Au as the top source/drain contact.
Figure 1(b) shows the HAADF-STEM with EDX mapping
of the O2-annealed In2O3 TFT, highlighting the Al/In/O ele-
ments. The top Pt layer was deposited to protect the top portion
of the specimen from ion damage during sample preparation.
The corresponding elemental profiles shown in figure 1(c) con-
firm that the thickness of the In2O3 thin film is ∼10 nm. The
thickness of the In2O3 thin film was also jointly determined

by ellipsometer and AFM measurements. Figure 1(d) shows
the surface morphology image of the O2-annealed In2O3 thin
film, indicating a smooth surface. As shown in figure 1(e),
the surface roughness root mean square (RMS) values of the
O2-, Ar-, FG-, and N2-annealed In2O3 films extracted from
the corresponding AFM images are 0.56, 0.52, 0.58, and
0.53 nm, respectively, indicating that the surface roughness of
the annealed films does not depend on the different annealing
atmospheres. Figure 1(F) shows the XRD diffraction pattern
of the annealed In2O3 thin films on the SiO2/Si substrate. A
weak diffraction peak at ∼31.8◦ corresponding to the (222)
diffraction pattern was observed for all annealed In2O3 thin
films, indicating their crystallinity nature. The presence of a
strong diffraction peak at ∼33.2◦ originates from the Si (100)
substrate. The crystallinity of the In2O3 thin films was further
confirmed by TEM analysis.

Figure 2(a) shows the UV–Vis transmission spectra of all
annealed In2O3 thin films. These films were deposited on a
sapphire substrate with a thickness of ∼40 nm. The result
indicates that the transmittance of the films does not depend
on the annealing atmosphere, and all films demonstrate almost
full transmittance in the visible region. Figure 2(b) shows
the corresponding Tauc plots extracted from the transmission
spectra. The optical bandgap (Eg) is determined using the
Tauc’s relation [40, 41]: (ɑhʋ)2 = A(hʋ − Eg), where ɑ is the
absorption coefficient, A is a constant, h is the Planck con-
stant, and ʋ is the frequency. Eg is extracted by extrapolating
the linear part to the energy at (ɑhʋ)2 = 0. Results indicate that
the annealing atmosphere has no effect on the bandgap of the
films because all annealed films exhibit the same Eg value of
3.71 eV.

To investigate the oxygen-related species in the In2O3 thin
films annealed under different annealing atmosphere, XPS
measurements were performed. As shown in figure 3, the O 1s
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Figure 2. (a) UV–Vis transmittance spectra, and (b) corresponding extracted Tauc plots of In2O3 thin films.

Figure 3. O 1s spectra of In2O3 thin films annealed under (a) O2, (b) Ar, (c) FG, and (d) N2 atmospheres, respectively.

peak was deconvoluted into three peaks centered at 529.7 eV
(OI), 531.3 eV (OII), and 532.4 eV (OIII), corresponding to the
oxygen in the In–O, VO, and O–H/C–O [42, 43], respectively.
The peak area ratios of OII/(OI + OII + OIII) were 22.86%,
23.11%, 23.83%, and 25.11% for the In2O3 thin films annealed
under O2, Ar, FG, and N2 respectively. These results indicate
the presence of a large number of VO in the In2O3 thin films.
The N2- and O2-annealed films have the largest and smallest
number of Vo, respectively. Similar results have been repor-
ted regarding IGZO TFTs [44, 45]. In addition to VO, the
O–H/C–O component is an important criterion to determine
the quality of the In2O3 thin films, as less O–H/C–O leads to
reduced surface scattering and electron charge trapping [29,
46]. The peak area ratios of OIII/(OI +OII +OIII) of the In2O3

thin films annealed under O2, Ar, FG, and N2 were 13.76%,

12.86%, 10.45%, and 11.01%, respectively. To summarize, the
O2-annealed In2O3 thin film has the smallest Vo and the largest
O–H/C–O component, whereas the Ar-annealed In2O3 thin
film exhibits moderate VO and O–H/C–O component. Both
N2- and FG-annealed films exhibit smaller O–H/C–O com-
ponents, whereas the VO component of the N2-annealed In2O3

thin film is larger than that of the FG-annealed In2O3 thin film.
Table 1 lists the elemental concentrations of the In2O3 thin

films annealed under different atmospheres. The In/O atomic
ratios of the annealed In2O3 thin films are in increasing order
of the annealing atmosphere of O2, Ar, FG, and N2, respect-
ively. Moreover, even for the smallest atomic ratio (1:1.39)
of the In2O3 thin film annealed in O2, it is still larger than
that (1:1.5) of stoichiometric In2O3. This reveals that sputtered
In2O3 thin films are typically rich in VO.
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Table 1. Elemental concentrations of In2O3 thin films annealed
under different atmospheres.

Annealing atmosphere In O Atomic ratio of In:O

O2 41.92% 58.08% 1:1.39
Ar 43.61% 56.39% 1:1.29
FG 43.80% 56.20% 1:1.28
N2 44.07% 55.93% 1:1.27

Figures 4(a) and (b) shows the representative ID–VGS char-
acteristics of In2O3 TFTs annealed under different atmosphere
on linear (VDS = 0.1 V) and logarithmic (VDS = 10 V)
scales, respectively. Here, the enhancement mode is defined as
VTH >0 V, whereas the depletion mode is the opposite. Using
linear extrapolation, the VTH of the O2-, Ar-, FG-, and N2-
annealed In2O3 TFTs are 1.7, 0.7, −1.1 and −2.8 V, respect-
ively. This result indicates that enhancement- and depletion-
mode operation of In2O3 TFTs can be selectively achieved
under different post-deposition annealing atmospheres. The
Ion/off ratio of the O2-, Ar-, and FG-annealed TFT is∼108, with
the FG-annealed TFT exhibiting a slightly higher Ioff. In con-
trast, the N2-annealed In2O3 TFT exhibited undesired switch-
ing characteristics that are not completely depleted at a reas-
onable gate bias. Note that the gate leakage current (IG) for all
annealed samples exhibits low values of ∼10−11 A, which is
the minimum current detection limit of our Keithley 4200 sys-
tem. Figures 4(c)–(f) shows the representative ID–VDS charac-
teristics of In2O3 TFTs annealed under different atmosphere.
All annealed TFTs exhibit good operation in the n-channel
mode with clear pinch-off voltages and saturation drain cur-
rents. The linear increase in ID in the low drain voltage region
shows a good ohmic contact between the channel layer and
the source/drain contact. ID obtained at VGS of 10 V is 2.2,
2.7, 3.9, and 5.6 mA in increasing order for the O2-, Ar-, FG-
, and N2-annealed In2O3 TFTs, respectively. The reference
as-deposited In2O3 TFT was also measured, and the corres-
ponding ID–VGS and ID–VDS curves are shown in figure S1.
Compared to the annealed samples, the as-deposited In2O3

TFT shows undesirable electrical performance with a larger
VTH (6.8 V) and lower ID (0.011 mA) at VGS of 10 V under
the same VDS sweeping condition. Similar results have been
reported for IGZO [47], IZTO [32], and InSnO [48] TFTs. It
is known that the OS thin films deposited at room temperature
typically have a loose structure that exhibits carrier scattering
caused by poor film quality, resulting in few free carriers in the
films and low conductivity and mobility. The electrical per-
formance of the films can be greatly improved by promoting
oxygen diffusion from the OS channel layer and rearrange-
ment of molecular bonds through post-deposition annealing
[32, 47, 48].

Figures 5(a)–(d) summarizes the dependence of VTH, µFE,
ID, and SS on the annealing atmosphere evaluated from
over 20 devices on the same substrate. µFE was determined
from the linear transfer characteristics from equation (1),
µFE = Lgm/(WCOXVDS), where gm is the transconductance,
COX is the oxide capacitance of the gate dielectric, andW and

L are the channel width and channel length, respectively. SS
was determined from equation (2): SS = (dVGS/dlogIDS)MAX.
ID was defined as the ID at a fixed VOV (VOV = VGS − VTH)
of 8 V for VDS = 0.1 V in the transfer characteristics. All
annealed TFTs show narrow parameter distributions in a single
batch of devices, which confirms their high uniformity. For
TFTs annealed under O2, Ar, FG, and N2, µFE, ID, and SS are
in increasing order, accompanied by a negative shift in VTH.
The observed electrical results are consistent with XPS results
shown in figure 3 as we assume that the condition of the In2O3

thin films is correlates with that of oxygen-related species, par-
ticularly VO. The conducting electrons in the In2O3 thin films
are mainly derived from VO that act as shallow donor states.
Thus, a high number of VO indicates high carrier concentra-
tion, resulting in low VTH, a high conductivity and mobility
[49, 50]. However, a higher electron concentration promotes
the formation of percolation conduction paths in OSs, making
it a problem for TFTs to reach complete depletion. The O2-
annealed In2O3 TFT exhibits lower conductivity and mobility
because O2 fills certain VO, resulting in a lower carrier concen-
tration than those of the other films. The N2-annealed In2O3

TFT only reached partial depletion because of an excessive
carrier concentration, which is mainly attributed to the desorp-
tion of oxygen atoms during theN2 annealing process resulting
in a large amount of VO in the In2O3 thin film [51]. These res-
ults are consistent with previous reports on IGZO and IGTO
TFTs [29, 45]. The SS of the N2-annealed In2O3 TFT is not
provided because VTH is so negative that SS cannot be mean-
ingfully measured. The higher SS of N2- and FG-annealed
TFTs than that of the O2- andAr-annealed TFTs indicates their
poorer gate control, which is mainly attributed to their higher
carrier concentrations.

The dependence of gate bias stability on the annealing
atmosphere was investigated with a positive bias value of
10 V and a stress time of 3000 s. During bias stress, the
gate was biased at a fixed voltage value of 10 V, while the
source and drain were grounded. Bias stability is evaluated
by the variation of VTH, which is determined using the lin-
ear extrapolation of the transfer curve at the maximum gm
point. Figures 6(a)–(d) show the evolution of the transfer char-
acteristics of the In2O3 TFTs annealed under O2, Ar, FG,
and N2, respectively. From these figures, the transfer curves
shift almost parallel toward the positive direction as the stress
time increases. The long-term rate of VTH shift is significantly
reduced with a clear directional difference, thus suggesting
the rebalance of the rates of different degradation mechanisms
[52]. From the VTH–stress time curves in figure 6(e), the cor-
responding∆VTH of the O2-, Ar-, FG-, and N2-annealed TFTs
are 4.8 V, 3.9 V, 3.3 V and 3.4 V, respectively, at a stress time
of 3000 s. This∆VTH difference showed the same trend as the
difference of relative area of the OIII component observed in
the XPS analysis. Previous studies on OS thin films and TFTs
have demonstrated that that OIII mainly originates from the
oxygen in absorbed hydroxyl and carbonate species (O–H/C–
O), which typically generate acceptor-like states near the CB
edge and enhance electron trapping during PBS application
because of their polar nature in OSs [29]. Therefore, the larger
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Figure 4. Representative (a) linear-scale and (b) log-scale ID–VGS characteristics of In2O3 TFTs prepared under different annealing
atmospheres. Representative ID–VDS characteristics of (c) O2-, (d) Ar-, (e) FG, and (f) N2-annealed In2O3 TFTs.

∆VTH observed in the PBS tests of the O2- and Ar-annealed
In2O3 TFTs can be attributed to the higher density of O–H/C–
O groups within the channel layer.

It is known that there are two factors that contribute to
VTH instability: (1) defect creation in the channel and (2)
charge trapping in the dielectric and/or at the channel/insu-
lator interface [53]. Defect creation typically results in the
persistent degradation of sub-threshold slope and device
mobility, whereas charge trapping does not [54]. The main
difference between charge trapping at the interface and the
injection into the dielectric is the amount of energy needed to
remove the injected charge. Releasing the charge injected into
a dielectric requires high energy and typically requires thermal
annealing or the application of bias [55]. We observed that our
devices can automatically relax to the original states within
4 h at room temperature after bias testing. The spontaneous

recovery of VTH after relaxation without any high energy and
the negligible changes in SS shown in figure 6(f) suggest that
charge trapping at the channel/insulator interface is the main
reason for the instability of the In2O3 TFT PBS condition. The
SS of the N2-annealed In2O3 TFT is not provided in figure 6(f)
because its large negative VTH so that SS cannot be meaning-
fully measured.

The time-dependent VTH observed during the PBS tests for
the TFTs annealed under different atmospheres can be fitted
using the stretched exponential equation:

∆VTH (t) = ∆VTH0 [1− exp[− (t/τ)β ]]

where ∆VTH0 is ∆VTH at infinite time, t is the stress
time, β is the stretched-exponential exponent, and τ is the
characteristic trapping time of the carriers, which correlates

6
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Figure 5. Dependence of the (a) VTH, (b) µFE, (c) ID, and (d) SS of annealed In2O3 TFTs under different annealing atmospheres,
respectively. The boxes are drawn with 25% of the data as the minimum and 75% as the maximum. The short horizontal lines correspond to
the median line of the data.

Figure 6. Evolution of transfer characteristics of In2O3 TFTs annealed in (a) O2, (b) Ar, (c) FG, and (d) N2 under PBS conditions. Variation
in (e) ∆VTH and (f) SS as a function of stress time.

with the average effective energy barrier [56, 57]. Table 2 lists
the exacted fitting parameters from curve fitting for all TFTs.
The In2O3 TFTs annealed under different atmospheres have
different ∆VTH0, τ and β, indicating different device degrad-
ation mechanisms, attributed to the generation of undesirable
trap centers [52]. Furthermore, certain studies confirmed that
the dynamic interaction between the exposed backchannel and
the ambient atmosphere affects the VTH stability of TFTs in

PBS tests. The adsorbed oxygen can capture electrons from
the CB, thus resulting in different oxygen species such as O2−

and O−. As a result of charge transfer, a depletion layer is
formed beneath the oxide surface, thus leading to a positive
shift in the VTH of the transistor. Because our devices use a
back-channel structure without a passivation layer covering it,
the influence of the ambient atmosphere cannot be excluded
[58–60].
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Table 2. Summary of stretched-exponential fitting parameters for
the PBS conditions of In2O3 TFTs under different annealing
atmospheres.

Annealing atmosphere ∆VTH0 (V) τ (s) β

O2 10.97 1.78 × 104 0.31
Ar 6.12 2.79 × 103 0.26
FG 5.56 4.60 × 103 0.30
N2 5.67 4.45 × 103 0.29

4. Conclusion

In this study, the effects of annealing atmospheres (O2, Ar, FG,
and N2) on the structural and electrical properties of room-
temperature sputtered In2O3 thin films as active channel lay-
ers were investigated. All annealed In2O3 thin films exhibit
polycrystalline properties with high transparency and optical
band gap of 3.71 eV. The annealing atmosphere has a signi-
ficant effect on the electrical properties and bias stability of
In2O3 TFTs, which is mainly attributed to significant changes
in oxygen-related species, particularly VO and O–H/C–O. The
measured µFE and SS values of the TFTs annealed under dif-
ferent atmospheres were in the order of O2 (lowest) to Ar, FG,
and N2 (highest). In the same order, the VTH of TFTs became
increasingly negative. This was mainly attributed to the higher
electron concentration caused by the higher VO concentration
in the In2O3 active channel layer. All annealed In2O3 TFTs
exhibit high mobilities (>40 cm2 V−1s−1) and microampere
level of ID. The O2-, Ar-, and FG-annealed In2O3 TFTs
exhibit clear transfer characteristics (Ion/Ioff ∼ 108) because of
a proper modulation of VO in these In2O3 thin films. However,
the N2-annealed TFT exhibits undesired switching properties
that are not completely depleted at a reasonable gate bias
because of a high carrier concentration caused by excess VO.
In addition, the ∆VTH values observed in the PBS tests for
the FG-, and N2-annealed TFTs were smaller than those for
the O2-, Ar-annealed TFTs, which is attributed to the lower
density of O–H/C–O groups in the In2O3 active channel layer.
Charge trapping at the channel/insulator interface was con-
sidered to be the main factor contributing to PBS instabil-
ity, and the ∆VTH observed during the PBS tests agreed well
with the stretched exponential equation. Our study suggests
that the annealing of sputtered In2O3 thin films is an effect-
ive approach to achieve high- performance TFTs with high
mobility and controllable VTH. Considering the strong influ-
ence of the annealing atmosphere on the electrical properties
of In2O3 TFTs, careful selection of the annealing atmosphere
is necessary.
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