RAPID COMMUNICATION • OPEN ACCESS ## Demonstration of β -Ga $_2$ O $_3$ nonvolatile flash memory for oxide electronics To cite this article: Vishal Khandelwal et al 2023 Jpn. J. Appl. Phys. 62 060902 View the article online for updates and enhancements. ## You may also like - A state-of-art review on gallium oxide fieldeffect transistors Rundi Qiao, Hongpeng Zhang, Shuting Zhao et al. - -Ga₂O₃ for wide-bandgap electronics and optoelectronics Zbigniew Galazka - <u>Progress in state-of-the-art technologies of Ga₂O₃ devices</u> Chenlu Wang, Jincheng Zhang, Shengrui Xu et al. https://doi.org/10.35848/1347-4065/acdbf3 ## Demonstration of β -Ga₂O₃ nonvolatile flash memory for oxide electronics Vishal Khandelwal¹, Manoj Kumar Rajbhar¹, Glen Isaac Maciel García¹, Xiao Tang¹, Biplab Sarkar², and Xiaohang Li^{1*} ¹Advanced Semiconductor Laboratory, Electrical, and Computer Engineering Program, CEMSE Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia Received April 13, 2023; revised June 3, 2023; accepted June 5, 2023; published online June 20, 2023 This report demonstrates an ultrawide bandgap β -Ga₂O₃ flash memory for the first time. The flash memory device realized on heteroepitaxial β -Ga₂O₃ film had TiN as the floating gate (FG) and Al₂O₃ as tunneling and gate oxides. A memory window of > 4 V was obtained between the programmed and erased states of the device. The memory states showed negligible degradation in threshold voltage (V_{TH}) even after 5000 s, exhibiting excellent nonvolatility. Furthermore, the device showed a V_{TH} of \sim 0.3 V after applying a 17 V programming voltage pulse, indicating the potential of the electron trapping phenomenon in the FG to achieve enhancement-mode operation in β -Ga₂O₃ transistors for high-power and logic applications. This study would provide insights for future oxide electronics integrating β -Ga₂O₃ memory. © 2023 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd (Ultra)wide bandgap oxides have tremendous application potential in transparent and flexible electronics, high power and RF electronics, UV photonics, and extreme environment electronics. 1-4) To date, several oxide semiconductors such as indium gallium zinc oxide,⁵⁾ In₂O₃,⁶⁾ and β-Ga₂O₃⁷⁾ have been widely explored in numerous applications including solid-state displays, thin-film transistors, power devices, and UV photodetectors. Among them, ultrawide bandgap β -Ga₂O₃ (E_G $\sim 4.9 \, eV$) has emerged as a promising candidate, especially for realizing oxide electronics, due to its superior properties including high-quality epitaxial films, wide n-type doping range from semi-insulating to highly conducting films, high chemical, and thermal stability. ^{7,8)} So far, β-Ga₂O₃-based power transistors,9) Schottky diodes, 10) and solar-blind photodetectors¹¹⁾ have been extensively studied. However, β-Ga₂O₃-based memory devices are also required for realizing oxide electronics. For memory devices, β-Ga₂O₃-based resistive randomaccess memory (RRAM) has been investigated. 12,13) However, the filamentary behavior of β-Ga₂O₃ RRAMs and their precise control remains unclear. Moreover, β-Ga₂O₃ RRAMs will require integration with an appropriate selector device^{14,15)} indicating a considerate effort is indispensable to achieve commercial maturity. Meanwhile, flash memory devices are a highly scalable alternative that exhibits substantial maturity due to decades of exploration. 16,17) Furthermore, trapping of electrons in the floating gate (FG) is a promising approach to realize enhancement-mode (E-mode) operation to get normally-OFF transistor operation. 18-20) Thus, the development of β-Ga₂O₃-based flash memory devices is deemed to play a pivotal role in realizing future oxide electronics for various application fields. In this work, we demonstrated a β -Ga₂O₃-based nonvolatile flash memory device using TiN metal as the FG. The virgin devices exhibited a normally-ON behavior, whereas positive and negative voltage pulses were applied for programming and erasing operation, respectively. A large memory of >4 V was obtained between the programming and erasing state with memory retention of $> 5000 \, \mathrm{s}$. A large program bias is shown to shift the threshold voltage (V_{TH}), thereby promoting the E-mode operation. The $\beta\text{-}\mathrm{Ga_2O_3}$ flash memory devices reported in this work showed a large nonvolatile memory window and a desirable memory retention characteristic. Flash memory devices were fabricated on a 50 nm thick β -Ga₂O₃ film grown on a c-plane sapphire substrate. A pulsed laser deposition (PLD) system was employed to grow a heteroepitaxial film using a Si-doped β -Ga₂O₃ target. The growth temperature was maintained at 700 °C, whereas the laser ablation frequency and laser energy were set to 5 Hz and 100 mJ, respectively. The oxygen partial pressure was kept as 4 mTorr during growth. Post-growth, the samples were cleaned thoroughly using acid and acetone-IPA solvent treatment. Next, flash memory devices with circular-geometry source/ drain/gate contacts were fabricated. A cross-sectional schematic and top microscopic view of the fabricated devices are shown in Figs. 1(a) and 1(b). First, Ti/Au (20/100 nm) source/drain (SD) ohmic contacts were formed on the β-Ga₂O₃ film. Metals were deposited using a DC/RF sputtering system and patterned using the standard photolithography and lift-off process. The ohmic contacts were then annealed at 400 °C for 60 s in N₂ ambient. Thereafter, a 7 nm thick Al₂O₃ layer serving as the tunneling oxide was deposited using an atomic layer deposition (ALD) system at 250 °C. A 20 nm of TiN metal as the FG was then deposited on the tunneling oxide followed by the conventional photolithography and lift-off process for patterning. Next, a 25 nm thick Al₂O₃ blocking oxide was deposited using ALD at 250 °C. Finally, a TiN/Ti/Au (20/20/70 nm) control gate (CG) was formed using the sputtering and conventional photolithography process. TiN deposition was accomplished using a DC/RF sputtering system having a high-purity Ti target in the N₂ reactive chamber. Finally, the Al₂O₃ dielectric layer was removed to expose the SD ohmic contacts via BCl₃-based dry etching. The diameter of the drain contact was kept as 200 μ m. A donut-shape CG had an inner circle and outer circle diameter of 220 and 280 μ m, respectively, ²Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India ^{*}E-mail: xiaohang.li@kaust.edu.sa Fig. 1. β -Ga₂O₃ flash memory device (a) Cross-sectional schematic. (b) Top microscopic view. (c) Fabrication process flow. indicating the effective (CG) gate length to be 30 μ m. FG also had a donut-shape geometry (inner circle and outer circle diameter of 240 and 260 μ m, respectively) and was kept within the boundaries of the CG. CG-to-drain and CG-to-source distances were kept as 10 μ m and 20 μ m, respectively. The device fabrication process flow is summarized in Fig. 1(c). The epitaxial film quality was characterized using X-ray diffraction (XRD) and an atomic force microscope (AFM). The free carrier concentration inside the β -Ga₂O₃ film was measured using a Hall-effect measurement system. Electrical characterization was performed on a temperature-controlled probe station equipped with a Keithley 4200 semiconductor parameter analyzer setup. The XRD pattern of the β -Ga₂O₃ film exhibited (-201), (-402), and (-603) peaks, as highlighted in Fig. 2(a) which confirms the mono-orientation of β -Ga₂O₃ film on the sapphire substrate. The RMS roughness of the film was observed to be ~0.8 nm indicating a smooth surface morphology, as observed in the AFM image of Fig. 2(b). Based on the Hall-effect measurements, the electron concentration and mobility of the β -Ga₂O₃ film were found to be ~5 × 10^{18} cm⁻³ and 0.35 cm⁻² V⁻¹ s⁻¹ at RT. Next, the $\beta\text{-}Ga_2O_3$ flash memory devices were characterized to validate the nonvolatile memory operation. Figure 3(a) shows the transfer characteristics of the $\beta\text{-}Ga_2O_3$ flash memory device at $V_{DS}=1$ V post application of program voltage pulses. The value of V_{TH} was estimated from the transfer characteristics using the extrapolation in the linear region method.²¹⁾ The virgin device showed a normally-ON behavior with a $\ensuremath{V_{TH}}$ of $-4.5\ \ensuremath{V}.$ Subsequently, the application of different positive voltage pulses to the CG resulted in a positive V_{TH} shift, validating the programming operation of the memory, as shown in Fig. 3(a). For instance, a +17 V, 100 ms pulse applied to the CG yields a V_{TH} of \sim 0.3 V. Note that such a positive value of V_{TH} in an nchannel transistor is identified as a normally-OFF device. For validating the erase operation, a virgin device was initially programmed to a V_{TH} of 0.3 V followed by the application of negative voltage pulses in the CG. Likewise, a negative V_{TH} shift was observed after the erase operation, as observed in Fig. 3(b). To validate the program/erase (P/E) repeatability, a virgin device was initially programmed followed by the erase operation. After the 1st program/erase (P/E) cycle, the device was tested for a 2nd P/E cycle, as highlighted in Fig. 3(c). Note that the virgin device and the device after 1st P/E cycle showed different sub-threshold slopes (SS). This can be attributed to the interface properties which are highly dependent on electron trapping/de-trapping phenomena, thereby influencing the SS after the 1st P/E cycle. Nevertheless, a reasonable P/E cycle repeatability after the 1st P/E cycle confirms the proof-of-concept working β -Ga₂O₃ flash memory device. The dependence of the V_{TH} shift on the program/erase bias voltage is shown in Fig. 4(a). A nonvolatile memory window of greater than 4 V is achieved by applying program/erase pulses of less than 20 V in magnitude. Once programmed or erased, an insignificant V_{TH} shift was observed even after Fig. 2. Material quality of the β -Ga₂O₃ film on sapphire (a) XRD pattern highlighting the (-201), (-402), and (-603) peaks. (b) AFM surface morphology showing a smooth surface. Fig. 3. Characteristics of β -Ga₂O₃ flash memory device at RT (a) Program characteristics, (b) Erase characteristics, (c) Program and erase characteristics after 1st P/E cycle. **Fig. 4.** Characteristics of β -Ga₂O₃ flash memory device at RT of $T=25\,^{\circ}$ C. (a) Measured V_{TH} of the device after the program and erase operations. (b) Retention characteristics. 5000 s, as shown in Fig. 4(b). Thus, the β -Ga₂O₃ flash memory showed excellent charge retention characteristics in its nonvolatile memory states. Notably, the increase in V_{TH} during the program operation was observed to be higher than that during the erase operation [Fig. 4(a)]. For example, a CG pulse of +15 V during the program operation induced an effective V_{TH} shift (ΔV_{TH}) of \sim 4 V from the virgin state, whereas a CG bias of -15 V during the erase operation induced an effective ΔV_{TH} of \sim 3 V from the programmed state. We speculate that a lower V_{TH} shift in β -Ga₂O₃ flash memories during the erase operation was likely caused by the electric field distribution inside the films and carrier tunneling paths. The energy band profiles of the layers of the β -Ga₂O₃ flash memory layers in isolation (noncontact), during the program operation, and during the erase operation are shown in Figs. 5(a)-5(c), respectively. The work function and band energy details of TiN, β -Ga₂O₃, and Al₂O₃ can be found elsewhere. $\overline{^{22-24)}}$ During the program operation, the β -Ga₂O₃ channel is under accumulation. Since the Fermi energy level is close to the conduction band in n-type ultrawide bandgap semiconductors such as β -Ga₂O₃, ²⁵⁾ the program voltage pulse applied to the CG effectively caused a band-bending across the tunneling and blocking oxides, as highlighted in Fig. 5(b). However, the device V_{TH} was nearly positive at the programmed state. Thus, a relatively larger area of β-Ga₂O₃ film under the gate is fully depleted when electrons are stored in the FG after the program operation. Therefore, a portion of the erase voltage pulse applied to the CG was sustained by the depleted β -Ga₂O₃ film along with the tunneling and blocking oxides, as highlighted in Fig. 5(c). Moreover, to obtain a similar V_{TH} shift, the desired erase pulse duration was observed to be significantly higher than the program pulse duration (not shown). All of these observations exhibited good agreement with the conventional FG or charge-trap NAND flash memories realized on Si. 17,26) Note that the device $|V_{TH}|$ after the erase operation was observed to be lower than $|V_{TH}|$ of the virgin device indicating the erase operation was unable to remove all the electrons injected into the FG during the program operation. Moreover, improving the erase characteristics by hole injection into the FG is an unlikely case for β -Ga₂O₃ flash memories. Traditionally, planar Si flash memories are fabricated on a p-type substrate,²⁷ whereas 3D-NAND flash memories are fabricated on poly-Si Fig. 5. Schematics of energy band profile along vertical outline through the CG (a) Isolated (noncontact) layers. During (b) program operation (c) erase operation. pillars.²⁸⁾ During the erase operation, holes can be injected from the channel to the charge-trap layer which is between the tunneling oxide and gate oxide layers.^{29,30)} Therefore, the choice of proper hole charge-trap dielectric has been observed to improve the erase characteristics of both planar and 3D Si flash memories.^{27,28)} In contrast, a low intrinsic carrier concentration in β -Ga₂O₃ indicates the channel is free from holes during the erase operation. Moreover, obtaining a p-type β -Ga₂O₃ is also a major challenge.⁸⁾ Thus, program and erase operation in β -Ga₂O₃ flash memories are thought to be solely due to electron injection and removal from the FG. We now discuss the contributions of this work apart from data storage via β -Ga₂O₃ memory. As observed in Fig. 4(a), a program bias voltage pulse of ≥ 17 V results in a normally-OFF transistor ($V_{TH} > 0 V$). Therefore, a programmed β -Ga₂O₃ flash memory device can be used to realize standalone normally-OFF low-voltage transistors. Moreover, both high-voltage and lowvoltage power switches are controlled by logic circuitry such as pulse width modulators. Traditionally, Si-based CMOS technology is used to realize this logic control circuitry. However, β-Ga₂O₃ based all-oxide electronics mandates these circuits to be realized on a native substrate. Unfortunately, the nonavailability of appropriate p-type doping in β -Ga₂O₃ poses a major hindrance in realizing CMOS logic operations. Interestingly, many of these logic control circuitries can be realized using a combination of normally-ON and normally-OFF transistors.³¹⁾ Thus, the logic circuitry for controlling the β-Ga₂O₃ power converters can be realized using a suitable connection of virgin/erased (normally-ON) β-Ga₂O₃ flash memory device with a programmed (normally-OFF) β-Ga₂O₃ flash memory device. Consequently, the power converters and their logic control circuitry can be monolithically integrated into a standalone β -Ga₂O₃ substrate. Finally, the flash memories reported in this work were fabricated on a foreign substrate indicating the compatibility of the β -Ga₂O₃ flash memory devices with low-cost heterogeneous integration schemes. Note that the devices investigated in this work were free from the post-deposition annealing (PDA) step. However, PDA has been observed to minimize the trap density at the Al₂O₃/β-Ga₂O₃ interface thereby improving the overall interface quality. $\overline{^{32,33)}}$ Therefore, a realistic β -Ga₂O₃ flash memory processing may require a PDA step to obtain a good tunnel oxide interface—which is critical for memory operations. In summary, we demonstrated β -Ga₂O₃ flash memory transistors using a TiN metal FG. A large nonvolatile memory window of > 4 V was observed between the programmed and erased states. The memory exhibited an insignificant threshold voltage shift in the programmed and erased states even after 5000 s. Finally, the realization of enhancement-mode operation by storing electrons in the FG is thought to be promising for realizing multiple essential devices of β -Ga₂O₃ electronics. **Acknowledgments** The KAUST researchers are grateful for KAUST Nanofabrication Corelab and funding support of the Baseline Fund BAS/1/1664-01-01, Near-term Grand Challenge Fund REI/1/4999-01-01, and Impact Acceleration Fund REI/1/5124-01-01. ORCID iDs Vishal Khandelwal https://orcid.org/0000-0003-1759 1209 Glen Isaac Maciel García https://orcid.org/0000-0002-2574 0545 Biplab Sarkar https://orcid.org/0000-0003-0074-0626 - 1) M. Lorenz et al., J. Phys. D: Appl. Phys. 49, 433001 (2016). - 2) X. Tang et al., ACS Appl. Mater. Interfaces 14, 1304 (2022). - X. Tang, Y. Lu, R. Lin, C.-H. Liao, Y. Zhao, K.-H. Li, N. Xiao, H. Cao, W. Babatain, and X. Li, Appl. Phys. Lett. 122, 121101 (2023). - 4) Y. Lu et al., ACS Appl. Mater. Interfaces 14, 47922 (2022). - 5) Y. Zhao et al., Adv. Funct. Mater. 30, 2003285 (2020). - 6) O. Bierwagen, Semicond. Sci. Technol. 30, 024001 (2015). - 7) A. J. Green et al., APL Mater. 10, 029201 (2022). - M. H. Wong and M. Higashiwaki, IEEE Trans. Electron Devices 67, 3925 (2020). - S. J. Pearton, J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev. 5, 011301 (2018). - A. Jadhav, L. A. M. Lyle, Z. Xu, K. K. Das, L. M. Porter, and B. Sarkar, J. Vac. Sci. Technol. B 39, 040601 (2021). - X. Chen, F.-F. Ren, J. Ye, and S. Gu, Semicond. Sci. Technol. 35, 023001 (2020). - 12) W. Li, J. Wan, Z. Tu, H. Li, H. Wu, and C. Liu, Ceram. Int. 48, 3185 - C.-C. Yang, J.-Q. Huang, K.-Y. Chen, P.-H. Chiu, H.-T. Vu, and Y.-K. Su, IEEE Access 7, 175186 (2019). - 14) J. Zhou, K.-H. Kim, and W. Lu, IEEE Trans. Electron Devices 61, 1369 - S. Kim, J. Zhou, and W. D. Lu, IEEE Trans. Electron Devices 61, 2820 (2014). - 16) A. Chen, Solid-State Electron. 125, 25 (2016). - B. Sarkar, N. Ramanan, S. Jayanti, N. D. Spigna, B. Lee, P. Franzon, and V. Misra, IEEE Electron Device Lett. 35, 48 (2014). - 18) D. Biswas, C. Joishi, J. Biswas, P. Tiwari, and S. Lodha, Appl. Phys. Lett. 117, 172101 (2020). - 19) B. Hou et al., IEEE Electron Device Lett. 39, 397 (2018). - 20) Z. Feng et al., IEEE Electron Device Lett. 41, 333 (2020). - A. Ortiz-Conde, F. J. García Sánchez, J. J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, Microelectron. Reliab. 42, 583 (2002). - 22) F. A. Noor, M. Abdullah, Sukirno, Khairurrijal, A. Ohta, and S. Miyazaki, J. Appl. Phys. 108, 093711 (2010). - L. A. M. Lyle, K. Jiang, E. V. Favela, K. Das, A. Popp, Z. Galazka, G. Wagner, and L. M. Porter, J. Vac. Sci. Technol. A 39, 033202 (2021). - 24) T. Kamimura, K. Sasaki, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, and M. Higashiwaki, Appl. Phys. Lett. 104, 192104 (2014). - S. Mukhopadhyay, L. A. M. Lyle, H. Pal, K. K. Das, L. M. Porter, and B. Sarkar, J. Appl. Phys. 131, 025702 (2022). - 26) Y. Park et al., 2006 Int. Electron Devices Meeting, 2006, p. 1. - 27) Y. Q. Wang, W. S. Hwang, G. Zhang, G. Samudra, Y.-C. Yeo, and W. J. Yoo, IEEE Trans. Electron Devices 54, 2699 (2007). - W. Y. Choi, H. S. Kwon, Y. J. Kim, B. Lee, H. Yoo, S. Choi, G.-S. Cho, and S.-K. Park, IEEE Electron Device Lett. 38, 164 (2017). - S. Jeon, J. H. Han, J. Lee, S. Choi, H. Hwang, and C. Kim, IEEE Electron Device Lett. 27, 486 (2006). - 30) B. Choi et al., Semicond. Sci. Technol. 33, 10LT01 (2018). - V. Khandelwal, S. Yuvaraja, G. I. M. García, C. Wang, Y. Lu, F. AlQatari, and X. Li, Appl. Phys. Lett. 122, 143502 (2023). - 32) M. Hirose et al., Microelectron. Eng. 216, 111040 (2019). - H. Zhou, S. Alghmadi, M. Si, G. Qiu, and P. D. Ye, IEEE Electron Device Lett. 37, 1411 (2016).