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Abstract

In this paper, we introduce a new class of models for spatial data obtained from max-convolution

processes based on indicator kernels with random shape. We show that this class of models have

appealing dependence properties including tail dependence at short distances and independence at

long distances. We further consider max-convolutions between such processes and processes with tail

independence, in order to separately control the bulk and tail dependence behaviors, and to increase

flexibility of the model at longer distances, in particular, to capture intermediate tail dependence.

We show how parameters can be estimated using a weighted pairwise likelihood approach, and we

conduct an extensive simulation study to show that the proposed inference approach is feasible in

high dimensions and it yields accurate parameter estimates in most cases. We apply the proposed

methodology to analyse daily temperature maxima measured at 100 monitoring stations in the state

of Oklahoma, US. Our results indicate that our proposed model provides a good fit to the data,

and that it captures both the bulk and the tail dependence structures accurately.
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1 Introduction

The statistical modeling of natural hazards and spatial extreme events requires specialized models

that appropriately capture the joint tail behavior (Genton et al., 2015; Huser and Davison, 2014;

Huser and Wadsworth, 2019; Xu and Genton, 2016). As assessment of future risks relies on tail

extrapolation, it is indeed crucial to develop models that are robust for reliable tail extrapolation,

while at the same time being flexible enough to adapt to the various asymptotic regimes that the

data may exhibit (Huser and Wadsworth, 2022).

From this perspective, spatial processes can be classified into two broad model classes: processes

exhibiting tail-dependence and those exhibiting tail-independence (in an asymptotic sense). Loosely

speaking, the former allow for the most extreme events (in the limit) to occur simultaneously

at different locations, while the latter do not. In practical terms, extremes from tail-dependent

processes can have quite a large spatial extent and thus large-scale impacts, while they tend to

be much more localized under tail-independence, especially as the magnitude of the extreme event

intensifies. Mathematically, to characterize the tail dependence class, it is helpful to consider

processes on a standardized scale, e.g., the uniform Unif(0, 1) scale. Assume that the spatial

process of interest, Z(s), s ∈ S, is stationary with continuous marginal distributions FZ(z), and

consider the standardized process U(s) = FZ{Z(s)} with common standard uniform margins,

thus focusing on the copula structure of Z(s). If, for any pair of sites {s1, s2} ⊂ S, the limiting

probability λU(h) = limu→1Pr{U(s1) > u | U(s2) > u}, h = s1 − s2, exists and is positive, i.e.,

λU(h) > 0, then both Z(s) and U(s) are called (asymptotically) tail-dependent. By contrast, if

this limit probability equals zero, i.e., λU(h) = 0, they are called (asymptotically) tail-independent.

While λU(h) characterizes the limiting form of dependence in the upper tail, we can also define

by symmetry a similar coefficient, λL(h) = limu→0 Pr{U(s1) < u | U(s2) < u} for the lower tail,

and an important methodological problem is to develop spatial models that have flexible forms of

dependence in both tails, i.e., potentially asymmetric (Gong and Huser, 2022) and/or changing as

a function of distance h between sites (Wadsworth and Tawn, 2012).

Classical geostatistical models and popular extreme-value models are usually quite limited in

their ability to capture joint tail characteristics, and even the most recently proposed models often

have strong restrictions (Huser and Wadsworth, 2022). Some models are always asymptotically tail-

independent, such as the wide class of trans-Gaussian processes (Xu and Genton, 2017), inverted

max-stable processes (Wadsworth and Tawn, 2012) and Laplace random processes (Opitz, 2016),

while others are always asymptotically tail-dependent, such as certain types of non-Gaussian latent

factor processes (Krupskii et al., 2018), max-stable processes (Huser and Genton, 2016; Schlather,

2002) and Pareto processes (Ferreira and de Haan, 2014; de Fondeville and Davison, 2018) popularly

used for modeling spatial extremes. Other more recent models provide improvements in their ability
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to capture both asymptotic tail-dependence and tail-independence in a rather flexible way, but

they cannot capture full independence as the distance between sites increases arbitrarily (Huser

et al., 2017; Huser and Wadsworth, 2019). Other models can capture a change of asymptotic tail-

dependence class as a function of the distance between sites, as well as full independence at infinity,

such as max-mixture models (Wadsworth and Tawn, 2012), or the spatial conditional extremes

model (Wadsworth and Tawn, 2022), or the so-called SHOT model of Hazra et al. (2021), but

they also have other limitations; in particular, existing max-mixture models are often relatively

heavily parameterized, which complicates inference; the spatial conditional extremes model does

not possess a convenient “unconditional representation”; and the SHOT model has intrinsic non-

stationary artefacts. There is thus a need to develop stationary spatial models that possess high

tail flexibility, that can capture full independence as the distance increases to infinity, while at the

same time, allowing for fast inference and simulation.

Recently, Cauchy kernel convolution processes (Krupskii and Huser, 2022) have been proposed

to address some of these challenges, including the ability to capture a change in asymptotic tail-

dependence class as a function of distance when considering compactly-supported kernel functions.

However, these models and the spatial process mixture extension proposed in Krupskii and Huser

(2022) are still quite restrictive in the sub-asymptotic tail-independence structure that they can

capture at large distances. Precisely, in the tail-independence case, the proposed model has a fast

joint tail decay rate that is equivalent to that of white noise.

In this paper, we address these shortcomings by building upon both kernel convolutions (Krupskii

and Huser, 2022) and max-mixture constructions (Wadsworth and Tawn, 2012), in order to design

new relatively parsimonious spatial models with a highly flexible tail structure, and which lead to

amenable pairwise likelihood-based inference. Specifically, we here consider max-convolutions of

the form

Z(s) = h(|A(s)|) sup
s∗∈A(s)

W (ds∗), s ∈ R
q, (1)

where A(s) ⊂ R
q is a compact subset of Rq with random shape such that |A(s)| ≤ A < ∞ almost

surely for any s ∈ R
q, W is a Lévy process (Sato, 1999) with independent increments, and h(·)

is a continuous function on [0, A]. Motivated by the copula literature, we shall study the process

(1) on a standardized scale in order to extract its dependence structure and disregard its marginal

distributions. As we shall show, the proposed process (1) has attractive properties, namely: (i)

it possesses tail-dependence at short distances and tail-independence at long distances; and (ii)

the range of tail-dependence and the dependence decay rate can be separately controlled using

parameters of the process A(s). We then further consider max-convolutions of the process (1)

with a different, tail-independent process, in order to increase flexibility at longer distances and

in particular, to capture intermediate dependence (i.e., a form of tail-independence, made precise
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below, that is weaker than tail-dependence but stronger than full independence). Furthermore,

inference for all the proposed models can be performed relatively easily using a weighted pairwise

likelihood approach.

The rest of the paper is organized as follows. Section 2 presents our proposed modeling frame-

work, with Section 2.1 defining our model precisely, Section 2.2 detailing the tail properties of the

process (1), Section 2.3 focusing on a special case which retains flexibility in the tails and makes in-

ference easier, and Section 2.4 considering max-mixture extensions that allow for greater flexibility

at sub-asymptotic levels. We discuss inference methods for these processes in Section 3, and assess

the performance of the proposed estimators by simulation in Section 4. In Section 5, we apply the

proposed models to analyze wind speed data, and Section 6 concludes with some discussion about

future research directions.

2 Max-convolution processes

2.1 Model definition

Consider the process Z(s) defined as in (1). To construct the process on a standardized scale,

we assume, without loss if generality, that the marginal distribution of W is Fréchet such that

sup
s∗∈A(s) W (ds∗) has the standard Fréchet distribution with the cumulative distribution function

(cdf) Pr(sups∗∈A(s) W (ds∗) ≤ z) = exp(−1/z), z > 0, if |A(s)| = 1.

Consider the random vector (Z1, Z2)
⊤ = (Z(s1), Z(s2))

⊤. For s1, s2 ∈ R
q, let Ai = |Ai|,

i = 1, 2, and A12 = |A12| denote random variables measuring the area of the disjoint random sets

A1 = A(s1)\A(s2), A2 = A(s2)\A(s1), and A12 = A(s1) ∩ A(s2), respectively. We assume that

the joint probability density function (pdf) of the random vector A = (A1, A2, A12)
⊤ exists and

we denote it by g(x), x ∈ (0,∞)3. Conditional on A = x = (x1, x2, x12)
⊤, we can thus write, for

i = 1, 2,

Zi = hi(x)max{Wi(x),W12(x)}, hi(x) = h(xi + x12),

where W1(x),W2(x) and W12(x) are Fréchet random variables distributed as

Pr{Wi(x) ≤ z} = e−xi/z, Pr{W12(x) ≤ z} = e−x12/z, z > 0.

The joint cdf of the random vector (Z1, Z2)
⊤ can thus be expressed as

F12(z1, z2) =

∫

(0,∞)3
Pr [h1(x)max{W1(x),W12(x)} ≤ z1, h2(x)max{W2(x),W12(x)} ≤ z2] g(x)dx

=

∫

(0,∞)3
Pr

[
W1(x) ≤

z1
h1(x)

,W2(x) ≤
z2

h2(x)
,W12(x) ≤ min

{
z1

h1(x)
,

z2
h2(x)

}]
g(x)dx

=

∫

(0,∞)3
exp

[
−
x1h1(x)

z1
−

x2h2(x)

z2
− x12 max

{
h1(x)

z1
,
h2(x)

z2

}]
g(x)dx, (2)
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and its marginal cdf is

Fi(z) = Pr(Zi ≤ z) =

∫

(0,∞)3
exp

{
−
(xi + x12)hi(x)

z

}
g(x)dx, i = 1, 2. (3)

To estimate model parameters using the pairwise likelihood approach, one needs to compute the

bivariate and marginal cdfs as given in (2) and (3). While these functions are not available in closed

form in most cases, numerical integration methods can be used to approximate them accurately in

practice. In Section 2.3, we consider a simpler special case where inference can be made more easily.

2.2 Tail properties

Following the notation introduced in the previous section, let Z = (Z1, Z2)
⊤ be a random vector

with margins F1, F2 and joint cdf F12 such that

F12(z1, z2) = CZ{F1(z1), F2(z2)}, (4)

where CZ is the copula function linking Z1 and Z2. A copula is simply a multivariate cdf with

uniform U(0, 1) marginal cdfs, and Sklar (1959) showed that the copula CZ in (4) is unique if the

margins F1, F2 are continuous, and can be calculated as

CZ(u1, u2) = F12{F
−1
1 (u1), F

−1
2 (u2)}, 0 < u1, u2 < 1.

In this section, we shall study the tail properties of the copula CZ . In particular, using similar

notation as in Section 1, but dropping the dependence on spatial lag h for simplicity, we show that

λU = lim
u↓0

−1 + 2u+ CZ(1− u, 1− u)

u
> 0,

i.e., the pair (Z1, Z2)
⊤ is tail dependent in its upper tail, provided that the distance ‖h‖ is sufficiently

small. Moreover, we shall show in Section 2.3 that C12 has intermediate lower tail dependence, i.e.,

CZ(u, u) ∼ ℓ(u)uκL, u ↓ 0,

where κL ∈ (1, 2) is the lower tail order and ℓ(u) is a slowly varying function. In particular, this

implies that (Z1, Z2)
⊤ is tail-independent in its lower tail, i.e.,

λL = lim
u↓0

CZ(u, u)

u
= 0.

Let Cn
Z
be the copula of the vector of componentwise maxima from i.i.d. copies Zi = (Zi1, Zi2)

⊤

of Z, i = 1, . . . , n, i.e., Mn = (Mn1,Mn2)
⊤ with Mnj = max(Z1j , . . . , Znj), j = 1, 2. Extreme-value
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copulas, denoted CEV, describe the class of dependence structures that arise as limits of Mn (when

properly renormalized), i.e.,

CEV(u1, u2) = lim
n→∞

Cn
Z
(u

1/n
1 , u

1/n
2 ), (u1, u2)

⊤ ∈ [0, 1]2. (5)

It can be shown that extreme-value copulas are such that for any k = 1, 2, . . . , one has CEV(u1, u2) =

Ck
EV(u

1/k
1 , u

1/k
2 ), (u1, u2)

⊤ ∈ [0, 1]2, and they can be characterized as

CEV(u1, u2) = exp{−ℓZ(− log u1,− log u2)}, (u1, u2)
⊤ ∈ [0, 1]2, (6)

where ℓZ is called the stable (upper) tail-dependence function and completely determines the limiting

extremal dependence structure of Z in the upper tail. From (5) and (6), the stable tail-dependence

function can be expressed as the limit ℓZ(w1, w2) = limn→∞ n{1 − CZ(1 − w1/n, 1 − w2/n)}, and

the next proposition gives the stable tail dependence function of the process (1).

Proposition 1 Assume that Z(s) is defined as in (1) such that sups∗∈A(s) W (ds∗) has the unit

Fréchet distribution if |A(s)| = 1. The stable tail-dependence function of the random vector

Z = (Z1, Z2)
⊤ = (Z(s1), Z(s2))

⊤ is

ℓZ(w1, w2) = w1

∫
(0,∞)3

x1h1(x)g(x)dx∫
(0,∞)3

(x1 + x12)h1(x)g(x)dx
+ w2

∫
(0,∞)3

x2h2(x)g(x)dx∫
(0,∞)3

(x2 + x12)h2(x)g(x)dx

+

∫

(0,∞)3
x12 max

{
w1h1(x)g(x)∫

(0,∞)3
(x1 + x12)h1(x)g(x)dx

,
w2h2(x)g(x)∫

(0,∞)3
(x2 + x12)h2(x)g(x)dx

}
dx , w1, w2 > 0.

(7)

Proof: By definition of the stable tail-dependence function, we need to compute the limit ℓZ(w1, w2) =

limn→∞ n{1−pn(w1, w2)}, where pn(w1, w2) = F12(F
−1
1 (1−w1/n), F

−1
2 (1−w2/n)) as n → ∞. From

(2), the marginal cdf of Zi is

Fi(z) =

∫

(0,∞)3
exp

{
−
(xi + x12)hi(x)

z

}
g(x)dx

= 1− z−1

∫

(0,∞)3
(xi + x12)hi(x)g(x)dx+ o(z−1), z → ∞,

and therefore

Fi(z
∗
i ) = 1−

wi

n
+ o(n−1), with z∗i =

n

wi

∫

(0,∞)3
(xi + x12)hi(x)g(x)dx.

This implies using (2), that

pn(w1, w2) = F12(z
∗
1 , z

∗
2) + o(n−1) = 1−

1

n

∫

(0,∞)3
P (w1, w2;x)g(x)dx+ o(n−1),
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where we use continuity of F12(z1, z2) to get the first equality and

P (w1, w2;x) = w1h
∗
1(x) + w2h

∗
2(x) + max

{
w1h̃1(x), w2h̃2(x)

}

with

h∗
i (x) =

xihi(x)∫
(0,∞)3

(xi + x12)hi(x)g(x)dx
, h̃i(x) =

x12hi(x)∫
(0,∞)3

(xi + x12)hi(x)g(x)dx
.

Therefore, we get that ℓZ(w1, w2) = limn→∞ n{1− pn(w1, w2)} =
∫
(0,∞)3

P (w1, w2;x)g(x)dx. �

Corollary 1 Under the assumptions of proposition 1, CZ has upper tail dependence with

λU = 2−ℓZ(1, 1) =

∫

(0,∞)3
x12min

{
h1(x)g(x)∫

(0,∞)3
(x1 + x12)h1(x)g(x)dx

,
h2(x)g(x)∫

(0,∞)3
(x2 + x12)h2(x)g(x)dx

}
dx.

It implies that λU = 0 if and only if g(x) = 0 for x12 > 0, except for a set of measure zero. It

follows that λU = 0 if Pr(A12) = 0, that is, the random sets A(s1) and A(s2) do not overlap with

probability one.

2.3 Simplified special case

We now consider a special case of the process (1) which makes inference simpler and still allows

for high flexibility when modeling stationary and isotropic data with rough spatial fields. For

simplicity, we here assume q = 2. We consider random sets that are disks with a random radius

whose dependence structure is driven by a spatially-correlated Gaussian copula. Specifically, we

make the following assumptions. Let h(z) = 1/z and A(s) = {s∗ : ||s− s
∗|| < R(s)}, where R(s)

is a trans-Gaussian spatial process with uniform U(rL, rU) marginals and some isotropic correlation

function ρR(·). The process (1) can thus now be written as:

Z(s) =
1

πR(s)2
sup

s∗:||s−s∗||<R(s)

W (ds∗), s ∈ R
2. (8)

Note that Z(s1) and Z(s2) are independent if h = ||s1 − s2|| > rU since A(s1) ∩ A(s2) = ∅ in

this case. The parameter rU therefore controls the dependence range for the process Z(s). On the

other hand, the parameter rL has an effect on the smoothness of the field, as we shall see.

Note that while we here assume that R(s) is an isotropic process, all the results presented below

can be easily extended to the general case of a nonstationary process R(s). Let gR(r1, r2; δ) be the

continuous joint density of (R(s1), R(s2))
⊤. For i = 1, 2, let xi + x12 = πr2i and δi = x12/(πr

2
i ), so

that xi = πr2i (1− δi) and x12 = πr2i δi, we can then rewrite (7) as

ℓ(w1, w2) = w1 + w2 −

∫

(0,∞)2
min {w1δ1(r1, r2; h), w2δ2(r1, r2; h)} gR(r1, r2; h)dr1dr2,

6



where δi ≡ δi(r1, r2; h) = A12h(Ai + A12) ≡ A12(r1, r2; h)/(πr
2
i ), i = 1, 2, with

A12(r1, r2; h) = |A12|, A12 = {s∗ ∈ R
2 : ||s1 − s

∗|| < r1, ||s2 − s
∗|| < r2},

Ai(r1, r2; h) = |Ai| = πr2i , Ai = {s∗ ∈ R
2 : ||si − s

∗|| < ri}.

It can be shown that

A12(r1, r2; h) = r21{φ1 − 0.5 sin(2φ1)}+ r22{φ1 − 0.5 sin(2φ2)},

φ1 = arccos

(
h2 + r21 − r22

2hr1

)
, φ2 = arccos

(
h2 + r22 − r21

2hr2

)
,

if |r1 − r2| < h, and A12(r1, r2; h) = min{πr21, πr
2
2} if |r1 − r2| ≥ h.

From (8), the process Z(s) has standard Fréchet marginals with Fi(z) = Pr{Z(s) ≤ z} =

exp(−1/z), z > 0. Since xi = πr2i {1− δi(r1, r2; h)} and x12 = πr2i δi(r1, r2; h), we find from (2) that

the copula of Z = (Z1, Z2)
⊤ linking Z1 = Z(s1) and Z2 = Z(s2) is

CZ(u1, u2; h) =

∫

(0,∞)2
u
1−δ1(r1,r2;h)
1 u

1−δ2(r1,r2;h)
2 min{u

δ1(r1,r2;h)
1 , u

δ2(r1,r2;h)
2 }gR(r1, r2; h)dr1dr2. (9)

The resulting copula is therefore a mixture of Marshall–Olkin copulas (Marshall and Olkin, 1967),

mixed over its parameters δ1 and δ2, and the resulting process Z(s) is a max-mixture of indicator

kernel spatial processes. From (9), by exploiting the properties of Marshall–Olkin copulas, we easily

find that:

λU(h) =

∫

(0,∞)2
min{δ1(r1, r2; h), δ2(r1, r2; h)}gR(r1, r2; h)dr1dr2,

Sρ(h) =

∫

(0,∞)2
3{2/δ1(r1, r2; h) + 2/δ2(r1, r2; h)− 1}−1gR(r1, r2; h)dr1dr2,

(10)

where Sρ(h) denotes the Spearman’s correlation coefficient of the copula CZ , which is a measure of

dependence in the bulk of the distribution. Note that CZ has a continuous density cZ(u1, u2) unless

rL = rU = r > 0 (when CZ is the Marshall–Olkin copula with parameters δ1(r, r; h) and δ2(r, r; h)).

Further note that

CZ(u, u; h) =

∫

(0,∞)2
u2−min{δ1(r1,r2;h),δ2(r1,r2;h)}gR(r1, r2; h)dr1dr2.

Since suprL<r1,r2<rU
min{δ1(r1, r2; h), δ2(r1, r2; h)} = δ1(rU , rU ; h) and gR(r1, r2; h) is a continuous

function, this implies that CZ(u, u; h) ∼ KLu
2−δ1(rU ,rU ;h) as u → 0, where KL is a positive constant.

Therefore, in the lower tail, the copula CZ has intermediate tail-dependence when h > 0, and the

lower tail order is given by κL = 2− δ1(rU , rU ; h). This means that the proposed model is (locally)

tail-dependent in the upper tail with positive λU(h) and tail-independent in the lower tail with

λL(h) = 0, yet with some flexibility in capturing the strength of lower tail dependence.

Now, let us investigate the local behavior of the proposed process, for small distances ||s1−s2||.

7



Proposition 2 Assume that Pr{|R(s1) − R(s2)| > h} > K0 > 0 as h = ||s1 − s2|| → 0, then

λU(h) ≤ 1−K0h(2rL + h)/r2U .

Proof: We find that

λU(h) ≤

∫

|r1−r2|<h

gR(r1, r2; h)dr1dr2

+

∫

r2>r1+h

r21
r22

gR(r1, r2; h)dr1dr2 +

∫

r1>r2+h

r22
r21

gR(r1, r2; h)dr1dr2

= 1−

∫

r2>r1+h

(
1−

r21
r22

)
gR(r1, r2; h)dr1dr2 −

∫

r1>r2+h

(
1−

r22
r21

)
gR(r1, r2; h)dr1dr2.

Since

1−
r21
r22

=
(r2 − r1)(r1 + r2)

r22
≥

h(2rL + h)

r2U
if r2 > r1 + h,

we find that

λU(h) ≤ 1−
h(2rL + h)

r2U

∫

|r1−r2|>h

gR(r1, r2)dr1dr2 ≤ 1−K0
h(2rL + h)

r2U
,

which concludes the proof. �

A similar result holds for Sρ(h). This implies that the process Z(s) can therefore be used to

model data with rough realizations at extreme levels where 1 − λU(h) = O(hα) with α ≤ 1, and

similarly for Sρ(h).

Since A12(r1, r2; h) = 0 if r1+ r2 ≤ h, we have that Z(s1) and Z(s2) are independent if and only

if r1 + r2 ≤ rU . Hence, while the parameter rU controls the range of dependence for the process

Z(s), rL controls its smoothness behavior. Figure 1 shows Sρ(δ) and λU(δ) given in (10) computed

for fixed rU = 0.4 and different values of rL, assuming that R(s) is a trans-Gaussian process with

U(rL, rU) marginals and exponential correlation function ρR(h) = exp(−h). We can see that smaller

values of rL corresponds to a faster rate of decay of Sρ(h) and λU(h), which results in a process

with rougher realizations. Figure 2 shows simulations of this process for different parameter values,

indeed with rougher realizations for smaller values of rL. For the remainder of the paper, we consider

the simplified definition of the process Z(s) as defined in (8).

2.4 Model extension

The proposed model (8) allows for high flexibility in the joint tail; however, it lacks flexibility in the

bulk of the distribution. Figure 1 indicates that the Speraman’s rho coefficient, Sρ(h), and the upper

tail dependence coefficient, λU(h), indeed follow very similar patterns. In particular, λU(h) = 0

if and only if the two respective realizations of the process Z(s) in (1) are exactly independent.
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Figure 1: Spearman’s ρ, Sρ(h) (left) and tail dependence coefficient, λU (h) (right) as in (10) calculated for rU = 0.4

and rL = 0.1, 0.2, 0.3, 0.4 (red, orange, yellow, green lines, respectively). The density gR is given by the Gaussian

copula with U(rL, rU ) marginals and the correlation ρR(h) = exp(−h).
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Figure 2: Realizations of the process Z(s) as defined in (8) with U(0, 1) marginals. We assume R(s) is a Gaussian

process with U(rL, rU ) marginals, exponential covariance function ρR(h) = exp(−h) and rU = 0.4, and rL = 0.4

(left), rL = 0.2 (middle) and rL = 0.0 (right).

However, strong overall dependence and asymptotic tail-independence can be observed in many

applications, and in this section we extend the model (1) to construct a new process that allows for

9



this type of dependence structure.

We consider an extension that allows for upper tail-dependence at smaller distances and tail-

independence with strong bulk dependence at larger distances.

Let Z(s) be the process as defined in Section 2.3, and Y (s) be a spatial process with marginal

cdf FY . We define the max-mixture process

Z̃(s) = max{qZ(s), (1− q)Y (s)} , 0 < q ≤ 1. (11)

This construction is similar to the hybrid spatial dependence model introduced by Wadsworth and

Tawn (2012) but here with different marginal distributions for Z(s) and Y (s). The main goal is

to find a simple process Y (s) that does not affect the tail dependence of the original process Z(s),

but that allows for greater flexibility at subasymptotic levels. Here, we assume that the marginal

distribution satisfies F̄Y (z) ∼ z−β , β > 0 as z → ∞.

By construction, the marginal survival function of process Z̃(s) in this case is

¯̃F (z) = Pr{Z̃(s) > z} = 1−e−q/z ·

{
1− F̄Y

(
z

1− q

)}
=

q

z
+
(1− q)β

zβ
+o(z−β)+O(z−2), z → ∞.

Let C̃, CZ , and CY be the copula linking (Z̃(s1), Z̃(s2))
⊤, (Z(s1), Z(s2))

⊤, and (Y (s1), Y (s2))
⊤,

respectively, with CZ defined in (9). Let λ̃U , λ
Z

U , λ
Y

U be the upper tail-dependence coefficient of

C̃, CZ , CY , and let κ̃U , κ
Y

U (κ̃L, κ
Y

L ) be the upper (lower) tail order of C̃, CY , respectively, where

we here drop the dependence on distance h for simplicity. The following cases are possible with

model (11):

• If both CZ and CY have upper tail-dependence, then it follows that

Pr(Z̃(s1) > z, Z̃(s2) > z) ∼ λZ

U

q

z
+ λY

U

(1− q)β

zβ
+ o(z−β) +O(z−2).

In particular, if β < 1, then λ̃U = λY

U . If β = 1, then λ̃U = qλZ

U + (1 − q)λY

U , and if β > 1,

then λ̃U = λZ

U . This implies that if β > 1, the new process Z̃(s) has the same tail-dependence

structure as the max-convolution process Z(s).

• If CZ has upper tail-dependence, and CY does not, then it follows that

Pr(Z̃(s1) > z, Z̃(s2) > z) ∼ λZ

U

q

z
+ ℓY (z)

1

zβκ
Y

U

+ o(z−βκY

U ) +O(z−2),

where ℓY (z) is a slowly varying function. In this case, if β < 1, then λ̃U = 0 and κ̃U =

min(1/β, κY

U ). If β = 1, then λ̃U = qλZ

U , and if β > 1, then λ̃U = λZ

U , which means that

mixing the original process Z(s) with a tail independent process Y (s) does not affect the tail

dependence if the marginals of the latter process have lighter tails.

10



• If CZ does not have tail dependence (and so CZ is the independence copula), and CY does,

then it follows that

Pr(Z̃(s1) > z, Z̃(s2) > z) ∼ λY

U

(1− q)β

zβ
+ o(z−β) +O(z−2).

If β < 1, then λ̃U = λY

U . On the other hand, if β = 1, then λ̃U = (1 − q)λY

U , and if β > 1,

then λ̃U = 0 and κ̃U = min(β, 2). In the last case, the tail index β controls the strength of

dependence of the process Z̃(s) at subasymptotic levels. We have that κ̃U ≤ 2, so that the

process cannot capture negative association in the upper tail.

• If both CZ and CY do not have upper tail dependence, then it follows that

Pr(Z̃(s1) > z, Z̃(s2) > z) ∼ ℓY z
−βκY

U + o(z−βκY

U ) +O(z−2),

where ℓY (z) is a slowly varying function. Here, λ̃U = 0, κ̃U = min(κY

U , 2/β) if β ≤ 1, and

κ̃U = min(βκY

U , 2) if β > 1.

The above results imply that mixing Z(s) with a process Y (s) with lighter tails (β > 1) does

not affect the upper tail-dependence properties of the new process Z̃(s). At the same time, if Y (s)

does not have tail-dependence (e.g., it is a marginally transformed Gaussian process), the strength

of dependence as measured by κ̃U = min(βκY

U , 2) for β > 1 can be quite weak. In particular, the

proposed process Z̃(s) has upper tail-dependence at small distances, and intermediate dependence

or tail quadrant independence with 1 < κ̃U ≤ 2 at large distances if Y (s) is based on a Gaussian

process. Thus, this process can effectively control the strength of dependence in the bulk of the

joint distribution even at large distances.

Note that the above results with β > 1 can also be extended to processes Y (s) with marginals

with lighter tails, such as the standard normal marginals which can be considered as a limiting case

with β → ∞.

Figure 3 shows Spearman’s ρ, Sρ(h), and the upper tail dependence coefficient, λU(h), for the

process Z̃(s) defined in (11) with q = 0.2 computed for different values of rL, assuming R(s) is

a trans-Gaussian process with U(rL, rU) marginals and exponential covariance function ρR(h) =

exp(−h), and Y (s) is a standard Gaussian process with exponential covariance function ρY (h) =

exp(−h/2). We can see that λU(h) is indeed the same as before (recall Figure 1), while the range

of overall dependence is now controlled by the process Y (s), and for the selected parameters,

Spearman’s ρ is larger compared to Figure 1.

Figure 4 shows realizations of the process Z̃(s) with the same tail dependence function λU(h) as

the process Z(s) whose realizations are shown in Figure 2 but with stronger overall bulk dependence

as measured by Sρ(h). We consider two choices for Y (s): a standard Gaussian process with N(0, 1)

11
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Figure 3: Spearman’s ρ, Sρ(h) (left) and tail dependence coefficient, λU (h) (right) calculated for the process Z̃(s)

defined in (11) with q = 0.2, rU = 0.4 and rL = 0.1, 0.2, 0.3, 0.4 (red, orange, yellow, green lines, respectively). We

assume ρR(h) = exp(−h), and Y (s) is a Gaussian process with N(0, 1) marginals that has the exponential covariance

function ρY (h) = exp(−h/2).

marginals (which can be considered as a limiting case with β → ∞) and the Student-t process with

Fréchet marginals FY (z) = exp(−z−β), β = 1.2. We can see that realizations of Z̃(s) for these two

choices of Y (s) look relatively similar. However, in the first row, the new process has tail quadrant

independence at large distances, i.e., κ̃U = 2, while in the second row, the process has intermediate

tail independence with tail order κ̃U = 1.2.

We now derive the lower tail dependence structure of the process Z̃(s). Assuming CY has lower

tail-dependence with λY

L > 0, we can write:

Pr(Z̃(s1) < z, Z̃(s2) < z) ∼ KLe
−qκZ

L/zFY

(
z

1− q

)
, Pr(Z̃(s1) < z) = e−q/zFY

(
z

1− q

)
, z ↓ 0,

where κZ

L = 2− δ1(rU , rU) is the lower tail order of the copula CZ defined in Section 2.3 and KL > 0

is some constant. It follows that C̃ is tail-independent in its lower tail. Furthermore, if FY (0) > 0

(e.g., Y follows a Student’s-t distribution), then κ̃L = κZ

L. Similar results hold if λY

L = 0. On the

other hand, if FY (0) = 0, κ̃L depends on the behavior of FY (z) around zero. In particular, if FY (z)

converges to zero at a faster rate then e−1/z , e.g., if FY (z) = exp(−z−β), z > 0, β > 1, then it is

easy to see that κ̃L = κY

L . One interesting special case arises when CY has lower tail-dependence,

12
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Figure 4: Realizations of the max-mixture process Z̃(s) as defined in (11) with q = 2, U(0, 1) marginals, exponential

covariance function ρR(h) = exp(−h) and rU = 0.4, and rL = 0.4 (left), rL = 0.2 (middle) and rL = 0.0 (right).

The process Y (s) is a Gaussian process (first row) and Student-t process with 4 degrees of freedom and with Fréchet

marginals with β = 1.2 (second row), with the correlation function ρY (h) = exp(−h/2).

which implies κ̃L = 1, so that the copula C̃ has quite strong dependence in the lower tail in this

boundary case.

3 Inference

We now discuss inference methods for the max-convolution process Z(s) as defined in Section 2.3

and the max-mixture process Z̃(s) from Section 2.4 that provides greater flexibility in the bulk of

the joint distribution as well as its tails.
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3.1 Max-convolution process in Section 2.3

Consider a sample {(zi1, . . . , zip)
⊤}ni=1 where (zi1, . . . , zip)

⊤ are i.i.d. realizations of (Z(s1), . . . , Z(sp))
⊤

from the process Z(s) in (8), for i = 1, . . . , n. Note that the copula linking (Z(s1), . . . , Z(sp))
⊤ can

be combined with arbitrary univariate marginals, which, in the general case, are unknown. If the

parametric form of marginal distributions is known, then their parameters can be estimated using

the marginal likelihood approach and then the integral transform can be applied to get the same

data but with U(0, 1) marginals, which we denote by {(ui1, . . . , uip)
⊤}ni=1. Alternatively, a nonpara-

metric approach based on ranks can also be used (Genest et al., 1995). The copula parameters can

be estimated in the second step; such a two-step estimation approach is computationally fast and

yields consistent and asymptotically normal estimates of the marginal and copula parameters under

mild conditions (Joe, 2005; Joe and Xu, 1996).

The full joint copula density of (Z(s1), . . . , Z(sp))
⊤ is difficult to compute. To circumvent this

problem, the composite likelihood approach can be used to estimate copula parameters (Lindsay,

1998; Varin et al., 2011; Varin and Vidoni, 2005). Let Cj1,j2
Z

(·, ·) be the copula cdf that links Z(sj1)

and Z(sj2). If rL 6= rU , the respective copula density cj1,j2
Z

(·, ·) exists, and we can thus define a

pairwise log-likelihood as

ℓp(u; θ) =

n∑

i=1

∑

j1<j2

wj1,j2 ln c
j1,j2
Z

(uij1, uij2; θ), (12)

where wj1,j2 ≥ 0 are some weights, and θ is a vector of unknown parameters that includes rL, rU as

well as the parameters of the pdf gR that links R(sj1) and R(sj2). The pairwise likelihood estimator

θ̂ = argmax
θ
ℓp(u; θ) is consistent and asymptotically normal under standard regularity conditions

(Lindsay, 1998; Varin et al., 2011).

Note that one cannot differentiate under the integration sign in (9) to compute the density

cj1,j2
Z

(u1, u2), so one possibility is instead to estimate the density numerically as

cj1,j2
Z

(u1, u2) ≈
1

2ǫ

{
Cj1,j2

Z
(u1 + ǫ, u2 + ǫ) + Cj1,j2

Z
(u1 − ǫ, u2 − ǫ)

}

−
1

2ǫ

{
Cj1,j2

Z
(u1 + ǫ, u2 − ǫ)− Cj1,j2

Z
(u1 − ǫ, u2 + ǫ)

}
,

where ǫ > 0 is a small positive real, and the copula cdf can be calculated using numerical integration,

e.g., using Gauss–Legendre quadrature (Stroud and Secrest, 1966). However, this approach requires

nq > 100 quadrature points to produce accurate results, so the computation can be very slow.

Instead, the copula density can be re-written as a two-dimensional integral, similar to the copula

cdf, and it only requires nq = 35 quadrature points to compute the integral with a good accuracy;

more details are provided in the Appendix.
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3.2 Max-mixture process in Section 2.4

Again, consider a sample {(z̃i1, . . . , z̃ip)
⊤}ni=1 where (z̃i1, . . . , z̃ip)

⊤ are i.i.d. realizations of (Z̃(s1), . . . ,

Z̃(sp))
⊤ for i = 1, . . . , n, from the process defined in (11).

Let C̃j1,j2(·, ·) be the copula cdf linking Z̃(sj1) and Z̃(sj2) and c̃j1,j2(·, ·) be the respective copula

pdf. Similar to the original process, the data can be marginally transformed to the U(0, 1) scale,

and we denote these data {(ui1, . . . , uip)
⊤}ni=1; a similar pairwise log-likelihood function can be used

to estimate the model parameters, and it can be written as

ℓ̃p(u; θ̃) =
n∑

i=1

∑

j1<j2

wj1,j2 ln c̃
j1,j2(uij1, uij2; θ̃), (13)

where wj1,j2 ≥ 0 are some weights, and θ̃ is a vector of unknown parameters that includes the same

parameters as for the original max-convolution process Z(s), as well as the parameter q and param-

eters controlling the process Y (s). Again, the composite likelihood estimator
̂̃
θ = argmax

θ̃
ℓ̃p(u; θ̃)

is consistent and asymptotically normal under standard regularity conditions.

Let F̃ j1,j2 and f̃ j1,j2 be the joint cdf and pdf, respectively, of (Z̃(sj1), Z̃(sj2))
⊤. Note that

F̃ j1,j2(z1, z2) = Pr

{
Z(sj1) ≤

z1
q
, Z(sj2) ≤

z2
q

}
· Pr

{
Y (sj1) ≤

z1
1− q

, Y (sj2) ≤
z2

1− q

}

= Cj1,j2
Z

{exp(−q/z1), exp(−q/z2)} · F
j1,j2
Y

(
z1

1− q
,

z2
1− q

)
,

where Cj1,j2
Z

is the copula linking (Z(sj1), Z(sj2))
⊤, and F j1,j2

Y
is the joint cdf of (Y (sj1), Y (sj2))

⊤.

This implies that

C̃j1,j2(u1, u2) = F̃ j1,j2
{
F̃−1(u1), F̃

−1(u2)
}
, c̃j1,j2(u1, u2) =

f̃ j1,j2
{
F̃−1(u1), F̃

−1(u2)
}

f̃
{
F̃−1(u1)

}
f̃
{
F̃−1(u2)

} ,

where F̃ (z) = e−q/z ·FY {z/(1− q)}, F̃−1 is the inverse marginal cdf, and where the marginal pdf is

f̃(z) = F̃ ′(z) =
q

z2
e−q/z · FY

(
z

1− q

)
+

1

1− q
e−q/z · fY

(
z

1− q

)
, fY (z) = F ′

Y (z).

The inverse cdf F̃−1(·) can be easily computed using numerical methods, e.g., a bisection method.

4 Simulation studies

In this section, we assess the performance of the pairwise likelihood estimators proposed in Section 3.

We use p = 10, 20, 30, 50 randomly selected locations in [0, 1]2 for each simulated data set. For each

simulation study, we simulate N = 200 data sets with n = 100 and n = 500 independent replicates.
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Table 1: Simulation study 1: Root Mean Square Errors (RMSEs) of estimates of the copula param-
eters θ = (r, θR)

⊤ obtained using the pairwise likelihood estimator considered in Section 3. True
parameters are set to (r, θR)

⊤ = (0.4, 0.25)⊤. The results are based on N = 200 simulated data sets
with n = 100 and n = 500 replicates and p = 10, 20, 30, 50 randomly selected locations in [0, 1]2.

p = 10 p = 20 p = 30 p = 50
n = 100 (0.13, 0.70) (0.05, 0.08) (0.04, 0.06) (0.04, 0.05)
n = 500 (0.05, 0.06) (0.02, 0.03) (0.02, 0.03) (0.02, 0.02)

4.1 Simulation study 1

We first consider the process Z(s) as defined in (8) in Section 2.3. We use a Gaussian process

R(s) defined in R
2 with uniform U(0, r) marginals, which corresponds to a process with quite

rough sample paths, and exponential covariance function ρR(h; θR) = exp(−h/θR). We select

θ = (r, θR)
⊤ = (0.4, 0.25)⊤, but similar results can be obtained with different parameter values.

We use the pairwise likelihood method as explained in Section 3.1 and we use Gauss–Legendre

quadrature with nq = 35 quadrature points to compute the bivariate copula pdf in (12). To

make computations faster and to remove pairs with very weak dependence, we set wj1,j2 = 1 if

||sj1−sj2|| < 0.25 and wj1,j2 = 0 otherwise. We assume here that univariate marginals are unknown

and we use the nonparametric approach based on ranks to transform data to the uniform scale.

Table 1 reports the results.

As expected, the pairwise likelihood estimates improve as p and n increase. In particular, they

have much smaller RMSEs, especially for the covariance function parameter θR, when p ≥ 20.

4.2 Simulation study 2

We now consider the process Z̃(s) as defined in (11) in Section 2.4. We use the same parameters

for the process Z(s) as in Section 4.1, and use a Gaussian process Y (s) with N(0, 1) marginals

(which can be considered as a special case with β → ∞) and exponential covariance function

ρY (h; θY ) = exp(−h/θY ) with θY = 0.5, and q = 0.2.

We use the pairwise likelihood approach as explained in Section 3.2 and we employ Gauss–

Legendre quadrature with nq = 35 quadrature points to compute the bivariate copula pdf in (13).

Similar to the first simulation in Section 4.1, we set wj1,j2 = 1 if ||sj1 − sj2|| < 0.25 and wj1,j2 = 0

otherwise. We again assume that univariate marginals are unknown and we use the nonparametric

approach based on ranks to transform data to the uniform scale. Table 2 reports the results.

Again, we can see that RMSEs are much smaller if p ≥ 20, and estimates are more accurate if

a larger sample size is used. In both cases, the estimates are quite accurate, even when n is rather
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Table 2: Simulation study 2: Root Mean Square Errors (RMSEs) of the estimates of copula θ̃ =
(r, θR, θY , q)

⊤ obtained using the pairwise likelihood estimator considered in Section 3. The true
values are set to θ̃ = (0.4, 0.25, 0.5, 0.2)⊤. The results are based on N = 200 simulated data sets
with n = 100 and n = 500 replicates and p = 10, 20, 30, 50 randomly selected locations in [0, 1]2.

p = 10 p = 20
n = 100 (0.25, 1.55, 0.26, 0.06) (0.08, 0.15, 0.13, 0.04)
n = 500 (0.11, 0.08, 0.08, 0.02) (0.04, 0.05, 0.04, 0.01)

p = 30 p = 50
n = 100 (0.07, 0.11, 0.09, 0.03) (0.05, 0.10, 0.09, 0.03)
n = 500 (0.03, 0.04, 0.04, 0.01) (0.03, 0.04, 0.04, 0.01)

small provided p ≥ 20.

4.3 Simulation study 3

Finally, we again consider the process Z̃(s) as defined in (11) in Section 2.4, but in a more challenging

scenario. We use the same parameters as for the process Z(s) in Section 4.1, but now taking

a Student’s-t process for Y (s), with ν = 3 degrees of freedom and Fréchet marginals FY (z) =

exp(−z−β), z > 0 with β = 1.2 and exponential covariance function ρY (h; θY ) = exp(−h/θY ), with

θY = 0.5, and q = 0.2.

This time, the parameter β = 1.2 controls the strength of dependence at larger distances and

therefore only selecting pairs at shorter distances as in the previous two simulation studies may

result in poor estimates for this parameter. Indeed, using the pairwise likelihood with wj1,j2 = 1

if ||sj1 − sj2 || < 0.25 and wj1,j2 = 0 otherwise yields very poor estimates of the model parameters.

Much better results are achieved when wj1,j2 = 1 if ||sj1 −sj2 || < 0.5, and with wj1,j2 = 0 otherwise.

We again use the nonparametric approach based on ranks to transform the data, and we do not

estimate the ν parameter, which is difficult to infer together with the other parameters. We do not

restrict the parameter β to be greater than one and let the data decide whether β ≤ 1 or β > 1, which

corresponds to long-range and short-range upper tail-dependence, respectively. Table 3 reports the

results.

The results are less accurate for this model, which indicates that parameters are weakly iden-

tifiable in this setting. The value β = 1.2 is quite close to one, so the two mixture components in

(11) play a quite similar role, and a larger sample size is required to obtain reasonable parameter

estimates. Parameter estimates are more accurate with a larger sample size, though the improve-

ment is small for θR. Using more spatial locations helps to somewhat improve estimates of β and

q, but does not seem to affect the results for the remaining parameters. One reason is that more

17



Table 3: Simulation study 3: Root Mean Square Errors (RMSEs) of the estimates of copula
θ̃ = (r, θR, θY , β, q)

⊤ obtained using the pairwise likelihood estimator considered in Section 3 and
weights wj1,j2 = 1 if ||sj1 − sj2|| < 0.5 and wj1,j2 = 0 otherwise. The true values are set to
θ̃ = (0.4, 0.25, 0.5, 1.2, 0.2)⊤. The results are based on N = 200 simulated data sets with n = 100
and n = 500 replicates and p = 10, 20, 30, 50 randomly selected locations in [0, 1]2.

p = 10 p = 20
N = 100 (0.90, 3.37, 0.13, 0.61, 0.10) (1.06, 3.66, 0.14, 0.38, 0.05)
N = 500 (0.35, 2.82, 0.07, 0.16, 0.05) (0.30, 2.85, 0.06, 0.12, 0.04)

p = 30 p = 50
N = 100 (1.00, 3.94, 0.15, 0.59, 0.06) (1.08, 3.81, 0.15, 0.33, 0.06)
N = 500 (0.23, 2.79, 0.06, 0.10, 0.04) (0.32, 3.24, 0.08, 0.12, 0.05)

pairs at longer distances are now selected, so adding more locations does not significantly improve

parameter estimates. Furthermore, all the parameters (r, θR, θY , β, q)
⊤ affect the tail properties of

the process considered in this section, unlike the process Z̃(s) used in Section 4.2, where only the

first two parameters r and θR determine the tail behavior, and the remaining parameters θY and q

affect the behavior in the bulk of the joint distribution. As a result, it is easier to identify all the

parameters in the latter case.

Although the parameter estimates are less accurate in this setting, the dependence structure is

estimated very well. For example, one of the estimated values of θ̃ = (r, θR, θY , β, q)
⊤ we obtained

for a simulated data set is θ̂ = (0.39, 5, 0.42, 0.87, 0.125)⊤. To assess the fit of the estimated model in

the joint lower and upper tails, we use tail-weighted measures of dependence proposed by Krupskii

and Joe (2015) (denoted by ̺L and ̺U , respectively) for each pair of variables. In addition, we use

the Spearman’s rho (denoted by Sρ) for each pair of variables. We compute the absolute differences

between these quantities for the true model with θ̃ = (0.4, 0.25, 0.5, 1.2, 0.2)⊤ and the estimated

model with θ̂ = (0.39, 5, 0.42, 0.87, 0.125)⊤, averaged across different pairs of variables, denoted

|∆|Sρ , |∆|̺L and |∆|̺U , respectively. We find that |∆|Sρ = 0.02, |∆|̺L = 0.03 and |∆|̺U = 0.04

which indicates a very accurate fit both in the tails and in the bulk of the distribution.

5 Temperature data application

We apply the proposed methodology to analyze temperature data measured at p = 100 stations in

the state of Oklahoma, United States. We use daily maxima, and the time period is May 1, 2022

to September 30, 2022, which contains n = 153 days in total. We do not include winter data as

the weather patterns can be considerably different during winter and summer months. The data

18



ACMU
−

2
0

1
2

−2 0 1 2

−
2

0
1

2

−2 0 1 2

ADA

ALTUS

−2 0 1 2

−2 0 1 2

−
2

0
1

2
−

2
0

1
2

ANTLERS

Figure 5: Normal scores scatter plots of the AR(2) residuals obtained using the daily maxima of the
temperatures recorded between May 1, 2022 and September 30, 2022 in Oklahoma, US, for some
selected pairs of stations.

can be downloaded from the website mesonet.org. We remove the seasonal component and fit an

AR(2) model to remove the temporal dependence. We then transform the residuals to the uniform

U(0, 1) scale using nonparametric ranks.

Figure 5 shows scatter plots of residuals transformed to the standard normal N(0, 1) marginals

for some selected pairs of stations. Asymmetric dependence can be observed in the scatter plots,

with a stronger dependence in the joint lower tail. To confirm these findings, we use tail-weighted

measures of dependence ̺L and ̺U we used in the previous section to assess the strength of depen-

dence in the joint lower and upper tails for each pair of stations. We also compute the parametric

estimates of these measures under the assumption of a Gaussian copula (denoted by ̺N as the value

of this measure is the same in the lower and upper tail for this copula). In addition, we compute the

Spearman’s rho (denoted by Sρ) for each pair of stations. Table 4 shows the values of Sρ, ̺L, ̺U , and
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̺N , averaged across different pairs of stations at distances h < 100, 100 ≤ h < 200, 200 ≤ h < 300,

300 ≤ h < 400, 400 ≤ h < 500 and h ≥ 500, where h is measured in kilometers. The strength of

dependence, as measured by Sρ, ̺L and ̺U gets weaker with larger distances, as expected; however

the dependence in the joint lower tail is stronger than that of the normal copula, especially at larger

distances, whereas the dependence in the joint upper tail is close to that of the normal copula. It

implies that models based on symmetric copulas, such as the normal or Student’s-t copula may not

be suitable for these data.

Table 4: Measures Sρ, ̺L, ̺U and ̺N calculated for the daily maximum temperatures, averaged
across different pairs of stations at distance h from each other (measured in km), for different
values of h

measure
distance h

< 100 (100, 200) (200, 300) (300, 400) (400, 500) ≥ 500
Sρ 0.90 0.75 0.61 0.49 0.39 0.26
̺L 0.89 0.74 0.59 0.51 0.43 0.34
̺U 0.79 0.57 0.39 0.30 0.23 0.17
̺N 0.78 0.54 0.37 0.26 0.19 0.11

We now fit several copula models to these data:

M1: Gaussian copula with a powered-exponential covariance function ρ(h; θ, α) = exp {−(h/θ)α},

θ > 0, α ∈ (0, 2];

M2: Student’s-t copula with a powered exponential covariance function ρ(h; θ, α) = exp {−(h/θ)α},

θ > 0, α ∈ (0, 2], and ν > 0 degrees of freedom;

M3: The copula corresponding to the process Z(s) as defined in (8) with the Gaussian process

R(s) with uniform U(0, r) marginals, r > 0, and exponential covariance function ρR(h; θR) =

exp(−h/θR), θR > 0;

M4: The copula corresponding to the process Z̃(s) as defined in (11), with the Gaussian process

R(s) with uniform U(0, r) marginals, r > 0, and exponential covariance function ρR(h; θR) =

exp(−h/θR), θR > 0, and a Gaussian process Y (s) with standard normal marginals and

powered exponential covariance function ρY (h; θY ;αY ) = exp {−(h/θY )
αY }, θY > 0, αY ∈

(0, 2];

M5: The copula corresponding to the process Z̃(s) as defined in (11), with the Gaussian process

R(s) with uniform U(0, r) marginals, r > 0, and exponential covariance function ρR(h; θR) =

exp(−h/θR), θR > 0, and a Student’s-t process Y (s) with ν = 4 degrees of freedom and
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Fréchet marginals FY (z) = exp
(
−z−β

)
, β > 0, and powered exponential covariance function

ρY (h; θY ;αY ) = exp {−(h/θY )
αY }, θY > 0, αY ∈ (0, 2].

Since the data show stronger dependence in the joint lower tail, and models M3–M5 can capture

stronger dependence in the upper tail, we fit these models to the negated residuals. Since the

parameters in model M5 are weakly identifiable as we showed in Section 4.3, we fix θR = 5 for this

model.

To assess the out-of-sample performance of these models, we randomly select between 70 and

90 stations to estimate parameters of these models. For the estimated models, we use Monte Carlo

simulations to approximate the values of Sρ, ̺L and ̺U for each pair of the remaining stations. We

compute the difference between the empirical and model-based estimates of these measures for the

remaining stations, averaged across different pairs of variables at distances h < 100, 100 ≤ h < 200,

200 ≤ h < 300, 300 ≤ h < 400, 400 ≤ h < 500 and h ≥ 500, where h is measured in kilometers.

We repeat this procedure 10 times; and Table 5 shows the results averaged across 10 repetitions.

Model M1 tends to overestimate dependence in the bulk of distribution, as measured by Sρ,

at longer distances, and underestimate it in the lower tail as expected. Model M2 tends to over-

estimate the overall dependence as well as dependence in the upper tail. Model M3 has quite a

rigid dependence structure so it is not flexible enough to accurately model dependence observed

in the data, especially at larger distances for the upper tail. On the other hand, Model M4 tends

to slightly underestimate dependence in the lower tail and in the upper tail at shorter distances.

Model M5 has the best fit to the data, both in the bulk of the joint distribution, and its tails, and

it can capture dependencies very well both at short distances and long distances, unlike the other

four models.

Conclusion

We have introduced a new class of models for spatial data and showed that these models can

handle data with complex dependence structures, including tail-dependence at short distances and

tail-independence at larger distances, with exact independence at infinite distances. Furthermore,

the full range of dependence can be achieved at long distances, from tail-dependence to intermediate

tail-dependence or tail-quadrant-independence. This class of models can capture tail asymmetry,

and the model parameters can be computed using a weighted pairwise likelihood approach. We

have shown in simulation studies that accurate parameter estimates can be obtained in most cases,

provided the number of replicates and stations is large enough.

While the model parameters can be efficiently estimated using the weighted pairwise likelihood

approach, the joint copula density of the process is not tractable in the general case and it would
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Table 5: Out-of-sample differences between the empirical and model-based estimates of Sρ, ̺L, and
̺U , averaged across different pairs of variables at distances h < 100, 100 ≤ h < 200, 200 ≤ h < 300,
300 ≤ h < 400, 400 ≤ h < 500 and h ≥ 500, computed for models M1–M5. Parameter estimates
are calculated using randomly selected 70–90 stations, and the differences are computed using the
remaining stations; this procedure is repeated 10 times, and the results are averaged across 10
repetitions. Here h is measured in kilometers. Note that copulas are here fitted to the negated
residuals, so the lower tail corresponds to the upper tail of the original data, and vice versa.

distance h
< 100 (100, 200) (200, 300) (300, 400) (400, 500) ≥ 500

Model Spearman’s rho, Sρ

M1 −0.01 −0.03 −0.05 −0.07 −0.07 −0.08
M2 −0.02 −0.05 −0.09 −0.12 −0.12 −0.13
M3 0.13 0.08 0.00 −0.08 −0.11 −0.16
M4 0.07 0.08 0.09 0.08 0.08 0.04
M5 0.03 0.03 0.03 0.02 0.02 −0.02

Measure of dependence in the lower tail, ̺L
M1 0.10 0.15 0.16 0.18 0.16 0.10
M2 0.06 0.07 0.05 0.05 0.04 0.00
M3 0.10 0.05 −0.04 −0.07 −0.10 −0.12
M4 0.10 0.13 0.15 0.16 0.14 0.08
M5 0.03 0.04 0.02 0.03 0.02 −0.01

Measure of dependence in the upper tail, ̺U
M1 0.00 −0.01 −0.04 −0.01 −0.01 −0.03
M2 −0.05 −0.09 −0.16 −0.14 −0.14 −0.13
M3 0.01 −0.10 −0.22 −0.25 −0.26 −0.24
M4 0.22 0.13 0.02 −0.01 −0.05 −0.04
M5 0.03 0.02 −0.03 −0.01 −0.02 −0.04

be interesting to explore alternative likelihood-free estimation approaches, such as neural Bayes

estimators (Richards et al., 2023; Sainsbury-Dale et al., 2023a,b). Moreover, simulation of the

spatial process conditional on the observed values of this process at some locations is not feasible.

One could use some version of rejection sampling for conditional sampling given that simulations

from the proposed model can be performed very fast. Since conditioning on multiple values is

not computationally feasible, one can use the value of a single aggregation functional. To further

enhance conditional simulation, one can adapt exponential tilting and importance sampling methods

(Ben Rached et al., 2016; Botev and L’Ecuyer, 2017) especially when the conditioning event is a

low-probability rare event.

One limitation of the proposed class of models is that they cannot capture lower tail depen-

dence, so extensions of these models (possible involving a combination of max- and min-convolution
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processes) that would allow both for lower and upper tail dependence is a topic of future research.

Appendix

We now show how to compute the density of a copula CZ(u1, u2; h) in (9). To illustrate the ideas, we

assume that rL = 0 and rU = 1 for simplicity. Without loss of generality, we also assume u1 > u2.

Let ũi = − ln ui, i = 1, 2, and ℓ12 = (ũ1/ũ2)
1/2. Note that

CZ(u1, u2; h) =

∫

u
δ1
1

<u
δ2
2

(u1u
1−δ2
2 −u2u

1−δ1
1 )gW (w1, w2; h)dw1dw2+

∫

[0,1]2
u2u

1−δ1
1 gW (w1, w2; h)dw1dw2,

where the first integral in the right hand side is

I0(u1, u2; h) =

∫

w1<w2ℓ12

(u1u
1−δ2
2 − u2u

1−δ1
1 )gW (w1, w2; h)dw1dw2

=

∫

[0,1]2
(u1u

1−δ2(w1w2ℓ12,w2;h)
2 − u2u

1−δ1(w1w2ℓ12,w2;h)
1 )gW (w1w2ℓ12, w2; h)dw1dw2.

Note that (u1u
1−δ2
2 − u2u

1−δ1
1 ) = 0 if w1 = w2ℓ12. This implies that

∂C(u1, u2; h)

∂u1
=

∂I0(u1, u2; h)

∂u1
+

∫

[0,1]2
(1− δ1)u2u

−δ1
1 gW (w1, w2; h)dw1dw2,

∂C(u1, u2; h)

∂u2
=

∂I0(u1, u2; h)

∂u2
+

∫

[0,1]2
u1−δ1
1 gW (w1, w2; h)dw1dw2,

∂2C(u1, u2; h)

∂u1∂u2
=

∂2I0(u1, u2; h)

∂u1∂u2
+

∫

[0,1]2
(1− δ1)u

−δ1
1 gW (w1, w2; h)dw1dw2,

where, with δi = δi(w1w2ℓ12, w2; h) and δ̃i = δi(w1ℓ12, w1; h),

∂I0(u1, u2; h)

∂u1

=

∫

[0,1]2

{
u1−δ2
2 − (1− δ1)u2u

−δ1
1

}
gW (w1w2ℓ12, w2; h)dw1dw2,

∂I0(u1, u2; h)

∂u2
=

∫

[0,1]2

{
(1− δ2)u1u

−δ2
2 − u1−δ1

1

}
gW (w1w2ℓ12, w2; h)dw1dw2,

∂2I0(u1, u2; h)

∂u1∂u2

=

∫

[0,1]2

{
(1− δ2)u

−δ2
2 − (1− δ1)u

−δ1
1

}
gW (w1w2ℓ12, w2; h)dw1dw2

−
ℓ12

2u1ũ1

∫ 1

0

{
(1− δ̃2)u1u

−δ̃2
2 − u1−δ̃1

1

}
gW (w1ℓ12, w1; h)dw1.

These formulas can be used to compute the copula cdf CZ(u1, u2; h), its derivatives and the copula

density. Gauss–Legendre quadrature can be used, with very accurate results obtained using only

nq = 35 quadrature points.
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