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Spatial Statistics Overview
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Marc's Background

e B.S. & M.S. in Applied Mathematics from Swiss Federal Institute of
Technology (EPFL), Switzerland, 1992/1994

@ Ph.D. in Statistics from EPFL, Switzerland, 1996
@ Professor in the USA, 1997-2012 (MIT, NCSU, TAMU)

@ Al-Khawarizmi Distinguished Professor of Statistics at KAUST,
Saudi Arabia (joined 2012)

Research Interests: statistical analysis, visualization, modeling,
prediction, and uncertainty quantification of spatio-temporal data, skewed
multivariate non-Gaussian distributions and robust statistics, with
applications in environmental and climate science, and renewable energies
such as wind and solar power
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|. Spatial Statistics Overview

Types of Spatial Data

Spatial data: data indexed by locations (coordinates) in space

Geostatistical data: index can vary continuously in space
Regularly spaced data vs irregularly spaced data
Point measurement vs block averages (or areal data)

Data: multivariate, space-time, directional, on the sphere

® 6 6 o o

Other types: lattice data; point patterns
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|. Spatial Statistics Overview

Types of Spatial Data

Spatial data: data indexed by locations (coordinates) in space

Geostatistical data: index can vary continuously in space
Regularly spaced data vs irregularly spaced data
Point measurement vs block averages (or areal data)

Data: multivariate, space-time, directional, on the sphere

® 6 6 o o

Other types: lattice data; point patterns

Law of Geography:
nearby things tend to be more alike than those far apart
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|. Spatial Statistics Overview
Spatial Data Example

Wind speed (hourly) at 28 stations in Saudi Arabia in June 2010
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Source: Lenzi, A., and Genton, M. G. (2020), Spatio-temporal probabilistic wind vector
forecasting over Saudi Arabia, Annals of Applied Statistics, 14, 1359-1378.
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|. Spatial Statistics Overview

Stochastic Processes and Random Fields

A stochastic process is a family or collection of random variables whose
members can be identified or indexed according to some set

e Example: a time series Z(t),t = t1,..., t,
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|. Spatial Statistics Overview

Stochastic Processes and Random Fields

A stochastic process is a family or collection of random variables whose
members can be identified or indexed according to some set

e Example: a time series Z(t),t = t1,..., t,
We call a spatial process, Z(s),s € D, D C RY, a random field
@ Typically d = 2 but d can be greater than 2
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|. Spatial Statistics Overview

Stochastic Processes and Random Fields

A stochastic process is a family or collection of random variables whose
members can be identified or indexed according to some set

e Example: a time series Z(t),t = t1,..., t,

We call a spatial process, Z(s),s € D, D C RY, a random field
@ Typically d = 2 but d can be greater than 2

A random field is Gaussian (Gaussian random field) if all finite-dimensional
distributions are multivariate normal, i.e., given any si,...,s,, the vector
(Z(s1),...,2Z(sn))" is multivariate normal

e If Z(s) is a Gaussian random field then it is completely determined by
its mean and covariance functions
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|. Spatial Statistics Overview

Mean and Covariance Functions of Random Fields

The mean function of Z(s) is

p(s) = E{Z(s)}
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|. Spatial Statistics Overview

Mean and Covariance Functions of Random Fields

The mean function of Z(s) is
p(s) = E{Z(s)}

The covariance function of Z(s) is

C(s1,82) = cov{Z(s1), Z(s2)} = E[{Z(s1) — u(s1)H{Z(s2) — u((s2)}]

where s1 and s, are two spatial locations
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|. Spatial Statistics Overview

Covariance Function

0 50 100 150 200 250 300 350

@ What is the domain of the spatial random field?

@ How do we calculate the covariance between the random field at the
two locations?
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|. Spatial Statistics Overview

Stationarity and Isotropy

Strict stationarity:
° Pr(Z(sl) <z,....,2(s5) < z,,) = Pr(Z(sl +h)<z,....2(sn+ h) < z,,)
for any finite n € N and h,sy,...,s, € D
Weak stationarity:
o u(s) = u(s+ h) for all h,s € D and
o C(s1,s2) = C(s1+ h,sx+ h) for all h;sy,s, € D
For a Gaussian process:
@ Strict Stationarity <= Weak Stationarity
Then, pu(s) is a constant and C(s1,s2) = Ci(s1 — s2)
Isotropy:
o C(s1,52) = C([|s1 — s2f])
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|. Spatial Statistics Overview

Requirements of Valid Covariance Functions

e Finite moments: E[{Z(s)}?] < o0
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|. Spatial Statistics Overview

Requirements of Valid Covariance Functions

e Finite moments: E[{Z(s)}?] < o0

@ Nonnegative definiteness (or positive semi-definiteness):

n
Z CjCkC(Sj,Sk) > 0
Jrk=1

for any finite n, s1,...,8, € D, and real numbers ci,..., ¢y
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|. Spatial Statistics Overview

Requirements of Valid Covariance Functions

e Finite moments: E[{Z(s)}?] < o0

o Nonnegative definiteness (or positive semi-definiteness):

n
Z CjCkC(Sj,Sk) > 0
Jrk=1

for any finite n, s1,...,8, € D, and real numbers ci,..., ¢y

@ Properties:
linear combination with positive coefficients; product; limit
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|. Spatial Statistics Overview

Why do We Care about Covariance?

(a) (b)

2 2
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@ Both (a) and (b) give zero-mean random fields on the domain
[0,10] x [0, 10] but in (a), every point is independent and in (b),
nearby points have positive correlations

e In (a), if a pixel is missing, what would be the “best” guess for that
missing pixel?

@ How about (b)?
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|. Spatial Statistics Overview

Why do We Care about Covariance?

@ This leads to the concept of Kriging

@ Kriging is another name for the Best Linear Unbiased Prediction
(BLUP): the predicted value at a new location is a linear combination
of the observations

o Linear: Z(so) = 3.7, \iZ(s))
o Unbiased: IAE]{f(so)} = u(so)
e Best: var{Z(so) — Z(so)} is minimal among all linear unbiased
predictions
@ In determining the coefficients (weights) A; of the linear combination,
the covariance plays an important role
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|. Spatial Statistics Overview

Matérn Covariance Function

The popular parameterization of Matérn covariance function:

_ 227 (i = sil\” o (lsi = sl 2
cov{Z(sj),Z(sj)} =0 0 ( 5 J ) K, <51> + 70—y

where K, (+) is the modified Bessel function of the second kind of order v,
[(-) is the Gamma function, and 1 is the indicator function

The four parameters determining the covariance structure are:
the partial sill o2, range 3 > 0, smoothness v > 0, and nugget 72
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|. Spatial Statistics Overview

Effective Range

The effective range is the distance at which the correlation function
reaches a small value, e.g. 5%

On the unit square, one can say the dependence is
weak / medium / strong

if the effective range is for example
01/03/07
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|. Spatial Statistics Overview

Plots of Matérn Covariance Functions
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|. Spatial Statistics Overview

Simulated Gaussian Random Fields using Matérn

0033 (weak) Smootiness =10 Range 1=0025 (weak) 5 Range 50021 (weak)

Large-Scale Spatial Data Science with ExaGeoStat https://github.com/ecrc/exageostat 16 / 40


https://github.com/ecrc/exageostat

|. Spatial Statistics Overview

Extension to Multivariate Covariance Models

For p-variate random fields
e Cross-covariance function C(h) = {Cjj(h) f'),jzl
o Cjj(h) = cov{Z(s1), Zi(s2)}, where h=s;1 — 5,

@ Parsimonious multivariate Matérn cross-covariance function

- 25 (1) ()

e 0ji,0j: marginal standard deviation
o vjj, v marginal smoothness and vj; = (v + 1) /2
e [3: spatial range
F(vi +d/2)M(v;+d/2)  T(vy)
* Py =T (i)l vy +d/2
(vin)T (vy) (vij +d/2)
dependence between j-th and j-th variables, where {r;}
correlation matrix

controls the

P .
ij=1 IS a
References:

1. Gneiting, T., Kleiber, W., and Schlather, M. (2010), Matérn cross-covari- ance functions for multivariate random fields,
Journal of the American Statistical Association 105(491), 1167-1177.

2. Apanasovich, T. V., Genton, M. G., and Sun, Y.(2012), A valid Matérn class of cross-covariance functions for multivariate
random fields with any number of components. Journal of the American Statistical Association 107(497), 180-193.
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|. Spatial Statistics Overview

Extension to Spatio-Temporal Models

Interaction between space and time? Separable or Nonseparable?
o Generic separable models: C(h,u) = o?ps(h)pT(u)
@ Gneiting model:

2 2
o cllhl=
Chv)= —— . | E—
()= Gl 1y P " (alupe + )P
@ Cressie and Huang non-separable model:
Ch, u) = o?(alul + 1)

{(alul + 1)? + b2||h]|2}3/2
@ A possible corresponding separable model by Mitchell et al.

0.2

(alu] +1)2(B?[| h||> + 1)/

C(h,u) =

References:
1. Gneiting, T. (2010), Nonseparable, stationary covariance functions for space-time data, Journal of the American Statistical
Association 97(458), 590-600.
2. Cressie N. and Huang H. (1999), Classes of nonseparable, spatio-temporal stationary covariance functions, Journal of the
American Statistical Association 94, 1330-1340.
3. Mitchell M.W., Genton M.G. and Gumpertz M.L. (2005), Environmetrics, 16(8), 819-831.
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|. Spatial Statistics Overview

Yan's Background

@ B.S. in Statistics from Beijing Institute of Technology, China, 2018
@ Ph.D. in Statistics from Renmin University of China, China, 2023

@ Postdoc at the Spatio-Temporal Statistics and Data Science
(STSDS), KAUST, Saudi Arabia, 2023-now

Research Interests: large-scale spatio-temporal statistics, subsampling,
and non-parametric regression
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|. Spatial Statistics Overview

Covariance Parameter Estimation

@ Variograms
o Fast

@ Likelihood-based methods

e Good theoretical properties
o Generally better performance
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|. Spatial Statistics Overview

Variograms

Consider a stationary (or isotropic) random field Z
with a covariance function C

var{Z(s1) — Z(s2)} = var{Z(s1)} + var{Z(s2)} — 2cov{Z(s1),Z(s2)}
2C(0) — 2C(51 — 52)

@ Denoting v(h) = C(0) — C(h), we call v(h) a semivariogram and
27(h) a variogram

@ Properties: v(0) =0, y(—h) = y(h)
e If Z is isotropic, v(h) = vo(||h]])
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|. Spatial Statistics Overview

Draw and Estimate Variograms

For simplicity, we assume stationarity and isotropy

o First, for every possible location pairs (s;, s;), calculate the distance
hj; = s; — s; between them and the difference between the observed
data on them, i.e., {Z(s;) — Z(s;)}?. Plot {Z(s;) — Z(s;)}? against
hj; for all location pairs, we get a variogram cloud.

@ Then bin the distances H = {hj;j} = U1, H;. In each bin, take the
average of distances, e.g., h; = N;Il Zh,-,-eH/ hj; and take the average
of the squared differences

@ Empirical estimator (Matheron):

2f“y(h,):Ni S {2Z(si) - Z(s;)P

hl S,'—SjEH/
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|. Spatial Statistics Overview

Draw and Estimate Variograms
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|. Spatial Statistics Overview

Estimate Covariance Parameters via Variograms

Suppose 27y(h; 0) is the true variogram and we have empirical
variogram values at L distance lags: 25(h;),i=1,...,L

We assume 4(h;) = v(h; 0) + e(h) and E{e(h)} =0
R(0); := cov{e(h;),e(h;)}

= (3(h),...3(h0) "

() = (v(h1;0),...,v(hi;0))"

= argming {4 —v(0)} ' R(6) " {4 — ()}

© o o
> 2 2
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|. Spatial Statistics Overview

Various Least Squares in Variograms Estimation

@ Ordinary least squares (OLS):

R(0) = ¢°1,

o Weighted least squares (WLS):
R(0) = diag(var{2§(h1)},. .., var{24(hy)})

2
where var{25(h;)} ~ {TXI(( ))]f

o Generalized least squares (GLS) considers the correlation between
e(h;) and e(h;); details omitted here

@ In practice, OLS or WLS commonly used for computational reasons
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|. Spatial Statistics Overview

Likelihoods

For simplicity, we focus on zero-mean stationary Gaussian random fields
The log-likelihood for n locations:

08) = —g log(2) — % log |X(8)] — %zﬁ:(a)*lz
where
Z(s1) C(s1,51;0) ... C(s1,54;0)
Z= ) Z(9) = : e
Z(sp) C(sn,51;0) ... C(sn,sm0)

@ Log determinant and linear solver require a Cholesky factorization of
the given covariance matrix X(6)

o Cholesky factorization requires O(n3) floating point operations and
O(n?) memory
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|. Spatial Statistics Overview

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimator
6 = argmax/((0)
[
= argmin{log |Z(0)| + Z"X(9)"1Z}
0
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|. Spatial Statistics Overview

Simulated Data Example

Zero-mean random process Z on [0, 1] x [0, 1] with 100 randomly chosen

observation sites sq, ...

,S100. Covariance:
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|. Spatial Statistics Overview

Simulated Data Results

@ True model:
C(h) = exp(—[|h|[/0.2) + 0.1 X 1{p—qy
@ MLE result:
C(h) = 0.86 exp(—||h||/0.26) + 0.067 x 1;p_gy
@ Variogram OLS result:
C(h) = 0.096 exp(—||h|| /0.0026) + 0.98 x 1;p—_gy

@ With only 100 data points, we may not expect both methods to
estimate the true parameters perfectly. However, we clearly see
variogram OLS performs much worse than MLE
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|. Spatial Statistics Overview

More Simulated Data Example

e Exponential variogram: 2y(h) =1 — exp(—h/0) with § = 0.25
@ Mean-zero GP generated at 400 random locations in unit square
@ Estimate # by OLS, WLS, MLE with 1000 replicates
e Functional boxplots (Sun and Genton, 2011)
@ Note: no outlier detection

(the factor is set to be large in order to see the variability better)
@ More in Yan and Genton (2018)

oLs wis MLE
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|. Spatial Statistics Overview

Prediction

For Gaussian random fields, kriging coincides with the conditional mean

z $©0) k(0
( Z(s0) ) ~ Not <°< k()T C(s0.50:0) ))

where k(0) = (C(s1,50:0), ..., C(sn,50:60)) "
The conditional distribution is

Z(s0)|Z ~ N(k(0)"E(0)1Z, C(s0, 50; 0) — k(8) " (6)'k(6))

@ Solution of system of linear equation X(8)~1Z also needs a Cholesky
factorization of X(6)
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When Size n of Datasets Becomes Large

e O(n?) floating point operations and O(n?) memory for exact
computations of Cholesky factorization
e High-Performance Computing (HPC) can help when n is large
o ExaGeoStat software: https://github.com/ecrc/exageostat

Note: n = 1’000’000 then n® = 10'8= 1 billion billions

o ExaGeoStat for:
@ Likelihood inference/learning for Matérn covariance function (+others)
@ Spatial kriging (interpolation)
© Random field simulations

@ Various approximation methods have been proposed in literature to
ease computation & memory burden

e 2021/2022/2023 KAUST Competitions on Spatial Statistics for
Large Datasets investigate the performance of different
approximation methods with large synthetic data generated by
ExaGeoStat
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|. Spatial Statistics Overview

Composite Likelihood Methods

Composite likelihood:

EC(0;2(51)7' sn)) H L(G Z Skl) ,Z(Skjk)>wk

k=1

Composite conditional likelihood under Vecchia's approximation:
Lc(0:2(s1),.., Z(sn)) = H F(Z(sk) | {Z(s1): 7 < k;si € N(s,)};6)
Composite pairwise likelihood:

Le(8:2(s1).. 2(s0) =TT TI f(2(se). 2(s):0)

References:
1. Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical

Society: Series B (Methodological) 50(2), 297-312.
2. Varin, C. (2008). On composite marginal likelihoods. Advances in Statistical Analysis 92(1), 1-28.
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|. Spatial Statistics Overview

Low-rank Methods

Low-rank methods
@ predictive process

o a small set of knots s7, ..., s-
o the predictive process Z(s) approximates the original process Z(s) as

Z(s) = E{Z(s)|Z(s7),--- Z(sp-)}
cTy*1z*

where Z* = (Z(s{),...,Z(sf,*))T, c=cov(Z(s),Z)",
Y* =var(Z")

o fixed rank kriging, etc.

Reference: Banerjee, S., A. E. Gelfand, A. O. Finley, and H. Sang (2008). Gaussian predictive process models for large spatial
data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(4), 825-848.
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|. Spatial Statistics Overview

Sparse Matrix Methods

Induced sparse covariance or precision matrix

@ covariance tapering
o C(-,-) = C(-,-) Ciaper (-, -), where Ciaper(-,-) is a covariance function
with compact support
e Sparsity is induced in the approximate covariance matrix

e Gaussian Markov Random Field (GMRF)

o Assumed to be conditional dependent on neighbors only
e Sparsity is induced in the approximate precision matrix

References:

1. Furrer, R., Genton, M. G., and Nychka, D. (2006), Covariance tapering for interpolation of large spatial datasets. Journal of
Computational and Graphical Statistics 15(3), 502-523.

2. Kaufman, C. G., M. J. Schervish, and D. W. Nychka (2008). Covariance tapering for likelihood-based estimation in large
spatial data sets. Journal of the American Statistical Association 103(484), 1545-1555.

3. Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent Gaussian models by using integrated
nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71(2), 319-392.
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Competitions on Spatial Statistics for Large Datasets

@ Goal: investigate the performance of different approximation
methods with large synthetic datasets generated by ExaGeoStat

@ Through the competition, we can better understand when each
approximation method is adequate

@ The full datasets with one million locations are publicly available and
act as benchmarking data for future research

@ The exact MLEs and lowest RMSEs achieved by researchers worldwide

are released so that other/new methods can be easily compared
e
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In 2021: Gaussian and non-Gaussian

@ Launched November 23, 2020; Ended February 1, 2021

@ 29 research teams worldwide registered and 21 teams successfully
submitted results

@ Competition consists of four parts:

Task Data model Data size
la | GP estimation GP 90,000
1b prediction GP predict 10,000 conditional on 90,000
2a prediction Tukey g-and-h predict 10,000 conditional on 90,000
2b prediction GP & Tukey g-and-h | predict 100,000 conditional on 900,000

@ Metric for GP estimation:
Mean Loss of Efficiency (MLOE) and
Mean Misspecification of the Mean Square Error (MMOM)

@ Metric for prediction: RMSE
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|. Spatial Statistics Overview

In 2021: Gaussian estimation /prediction results

Sub-competition Submission Score | Rank

ExaGeoStat(estimated-model) | 154 0
1a SpatStat-Fans 156 1
GpGp 186 2
RESSTE(CL /krig) 229 3
ExaGeoStat(true-model) 72 0
RESSTE(CL /krig) 78 | 1

1b ExaGeoStat(estimated-model) | 79 15
HCHISS 93 2
Chile-Team 113 3

Reference:

Huang, H., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2021), Competition on spatial statistics for large
datasets (with discussion), Journal of Agricultural, Biological, and Environmental Statistics, 1-16.

Large-Scale Spatial Data Science with ExaGeoStat https://github.com/ecrc/exageostat 38 / 40


https://github.com/ecrc/exageostat

|. Spatial Statistics Overview

In 2022: Nonstationary, space-time, multivariate

@ Launched March 1, 2022; Ended May 1, 2022

@ 20 research teams worldwide registered

@ Hosted the competition on the Kaggle machine learning and data
science platform

Sub- Setting True # of Training Testing
comp Data Model Datasets Data Size Data Size
1la Univariate GP with 2 90K 10K

Nonstationary Nonstationary
Spatial Mean or Cov
1b Univariate GP with 2 900K 100K
Nonstationary Nonstationary
Spatial Mean or Cov
2a Univariate GP with 9 90K 10K
Stat. ST Non-Separable Cov
2b Univariate GP with 9 900K 100K
Stat. ST Non-Separable Cov
3a Bivariate GP with 3 45K 5K
Stationary Parsimonious/Flexible
Spatial Matérn Cross-Cov
3b Bivariate GP with 3 450K 50K
Stationary Parsimonious/Flexible
Spatial Matérn Cross-Cov

Reference:
Abdulah, S., Alamri, F., Nag, P., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2022), The second competition on
spatial statistics for large data sets, Journal of Data Science, 20, 439-460.
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|. Spatial Statistics Overview

In 2023: Irregular locations, confidence/prediction intervals

o Launched February 1, 2023; Ended May 1, 2023
@ 11 research teams worldwide registered

o Five different designs considered for the locations of the observations:
1. Chessboard; 2. Left-bottom; 3. Satellite; 4. Clusters; 5. Regular

Sub-comp Model Target # designs  Training  Testing

la Gaussian Estimation 5 90K -
Matérn  (95% conf interval)

1b Gaussian Estimation 5 900K -
Matérn (95% conf interval)

2a Gaussian Prediction 5 90K 10K
Matérn  (95% pred interval)

2b Gaussian Prediction 5 900K 100K

Matérn  (95% pred interval)

Reference:
Hong, Y., Song, Y., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2023), The third competition on spatial
statistics for large datasets, Journal of Agricultural, Biological, and Environmental Statistics, 28, 618-635.
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