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Part I

Spatial Statistics Overview
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Marc’s Background

B.S. & M.S. in Applied Mathematics from Swiss Federal Institute of
Technology (EPFL), Switzerland, 1992/1994
Ph.D. in Statistics from EPFL, Switzerland, 1996
Professor in the USA, 1997-2012 (MIT, NCSU, TAMU)
Al-Khawarizmi Distinguished Professor of Statistics at KAUST,
Saudi Arabia (joined 2012)

Research Interests: statistical analysis, visualization, modeling,
prediction, and uncertainty quantification of spatio-temporal data, skewed
multivariate non-Gaussian distributions and robust statistics, with
applications in environmental and climate science, and renewable energies
such as wind and solar power
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I. Spatial Statistics Overview

Types of Spatial Data

Spatial data: data indexed by locations (coordinates) in space

Geostatistical data: index can vary continuously in space
Regularly spaced data vs irregularly spaced data
Point measurement vs block averages (or areal data)
Data: multivariate, space-time, directional, on the sphere
Other types: lattice data; point patterns

Law of Geography:
nearby things tend to be more alike than those far apart
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I. Spatial Statistics Overview

Spatial Data Example
Wind speed (hourly) at 28 stations in Saudi Arabia in June 2010

Source: Lenzi, A., and Genton, M. G. (2020), Spatio-temporal probabilistic wind vector
forecasting over Saudi Arabia, Annals of Applied Statistics, 14, 1359-1378.
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I. Spatial Statistics Overview

Stochastic Processes and Random Fields

A stochastic process is a family or collection of random variables whose
members can be identified or indexed according to some set

Example: a time series Z (t), t = t1, ..., tn

We call a spatial process, Z (s), s ∈ D, D ⊆ Rd , a random field
Typically d = 2 but d can be greater than 2

A random field is Gaussian (Gaussian random field) if all finite-dimensional
distributions are multivariate normal, i.e., given any s1, . . . , sn, the vector
(Z (s1), . . . , Z (sn))⊤ is multivariate normal

If Z (s) is a Gaussian random field then it is completely determined by
its mean and covariance functions
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I. Spatial Statistics Overview

Mean and Covariance Functions of Random Fields

The mean function of Z (s) is

µ(s) = E{Z (s)}

The covariance function of Z (s) is

C(s1, s2) = cov{Z (s1), Z (s2)} = E[{Z (s1) − µ(s1)}{Z (s2) − µ(s2)}]

where s1 and s2 are two spatial locations
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I. Spatial Statistics Overview

Covariance Function

What is the domain of the spatial random field?
How do we calculate the covariance between the random field at the
two locations?

Large-Scale Spatial Data Science with ExaGeoStat https://github.com/ecrc/exageostat 8 / 40

https://github.com/ecrc/exageostat


I. Spatial Statistics Overview

Stationarity and Isotropy

Strict stationarity:
Pr
(
Z (s1) ≤ z1, . . . , Z (sn) ≤ zn

)
= Pr

(
Z (s1 + h) ≤ z1, . . . , Z (sn + h) ≤ zn

)
for any finite n ∈ N and h, s1, . . . , sn ∈ D

Weak stationarity:
µ(s) = µ(s + h) for all h, s ∈ D and
C(s1, s2) = C(s1 + h, s2 + h) for all h, s1, s2 ∈ D

For a Gaussian process:
Strict Stationarity ⇐⇒ Weak Stationarity
Then, µ(s) is a constant and C(s1, s2) = C1(s1 − s2)

Isotropy:
C(s1, s2) = C2(∥s1 − s2∥)
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I. Spatial Statistics Overview

Requirements of Valid Covariance Functions

Finite moments: E[{Z (s)}2] < ∞

Nonnegative definiteness (or positive semi-definiteness):

n∑
j,k=1

cjckC(s j , sk) ≥ 0

for any finite n, s1, . . . , sn ∈ D, and real numbers c1, . . . , cn

Properties:
linear combination with positive coefficients; product; limit
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I. Spatial Statistics Overview

Why do We Care about Covariance?

Both (a) and (b) give zero-mean random fields on the domain
[0, 10] × [0, 10] but in (a), every point is independent and in (b),
nearby points have positive correlations
In (a), if a pixel is missing, what would be the “best” guess for that
missing pixel?
How about (b)?
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I. Spatial Statistics Overview

Why do We Care about Covariance?

This leads to the concept of Kriging
Kriging is another name for the Best Linear Unbiased Prediction
(BLUP): the predicted value at a new location is a linear combination
of the observations

Linear: Ẑ (s0) =
∑n

i=1 λiZ (s i)
Unbiased: E{Ẑ (s0)} = µ(s0)
Best: var{Ẑ (s0) − Z (s0)} is minimal among all linear unbiased
predictions

In determining the coefficients (weights) λi of the linear combination,
the covariance plays an important role
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I. Spatial Statistics Overview

Matérn Covariance Function

The popular parameterization of Matérn covariance function:

cov
{
Z (s i), Z (s j)

}
= σ2 21−ν

Γ(ν)

(∥s i − s j∥
β

)ν

Kν

(∥s i − s j∥
β

)
+ τ2

1{i=j}

where Kν(·) is the modified Bessel function of the second kind of order ν,
Γ(·) is the Gamma function, and 1 is the indicator function

The four parameters determining the covariance structure are:
the partial sill σ2, range β > 0, smoothness ν > 0, and nugget τ2
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I. Spatial Statistics Overview

Effective Range

The effective range is the distance at which the correlation function
reaches a small value, e.g. 5%

On the unit square, one can say the dependence is
weak / medium / strong
if the effective range is for example
0.1 / 0.3 / 0.7
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I. Spatial Statistics Overview

Plots of Matérn Covariance Functions
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I. Spatial Statistics Overview

Simulated Gaussian Random Fields using Matérn
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I. Spatial Statistics Overview

Extension to Multivariate Covariance Models
For p-variate random fields

Cross-covariance function C(h) = {Cij(h)}p
i ,j=1

Cij(h) = cov{Zi(s1), Zj(s2)}, where h = s1 − s2
Parsimonious multivariate Matérn cross-covariance function

Cij(h) = ρijσiiσjj
2νij Γ(νij)

(∥h∥
β

)νij

Kνij

(∥h∥
β

)
σii , σjj : marginal standard deviation
νii , νjj : marginal smoothness and νij = (νii + νjj)/2
β: spatial range

ρij = rij

√
Γ(νii + d/2)Γ(νjj + d/2)

Γ(νii)Γ(νjj)
Γ(νij)

Γ(νij + d/2) controls the

dependence between i-th and j-th variables, where {rij}p
i,j=1 is a

correlation matrix
References:
1. Gneiting, T., Kleiber, W., and Schlather, M. (2010), Matérn cross-covari- ance functions for multivariate random fields,
Journal of the American Statistical Association 105(491), 1167–1177.
2. Apanasovich, T. V., Genton, M. G., and Sun, Y.(2012), A valid Matérn class of cross-covariance functions for multivariate
random fields with any number of components. Journal of the American Statistical Association 107(497), 180–193.
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I. Spatial Statistics Overview

Extension to Spatio-Temporal Models
Interaction between space and time? Separable or Nonseparable?

Generic separable models: C(h, u) = σ2ρS(h)ρT (u)
Gneiting model:

C(h, u) = σ2

(a|u|2α + 1)τ
exp

(
− c∥h∥2γ

(a|u|2α + 1)βγ

)
Cressie and Huang non-separable model:

C(h, u) = σ2(a|u| + 1)
{(a|u| + 1)2 + b2∥h∥2}3/2

A possible corresponding separable model by Mitchell et al.

C(h, u) = σ2

(a|u| + 1)2(b2∥h∥2 + 1)3/2

References:
1. Gneiting, T. (2010), Nonseparable, stationary covariance functions for space-time data, Journal of the American Statistical
Association 97(458), 590-600.
2. Cressie N. and Huang H. (1999), Classes of nonseparable, spatio-temporal stationary covariance functions, Journal of the
American Statistical Association 94, 1330-1340.
3. Mitchell M.W., Genton M.G. and Gumpertz M.L. (2005), Environmetrics, 16(8), 819-831.
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I. Spatial Statistics Overview

Yan’s Background

B.S. in Statistics from Beijing Institute of Technology, China, 2018
Ph.D. in Statistics from Renmin University of China, China, 2023
Postdoc at the Spatio-Temporal Statistics and Data Science
(STSDS), KAUST, Saudi Arabia, 2023-now

Research Interests: large-scale spatio-temporal statistics, subsampling,
and non-parametric regression

Large-Scale Spatial Data Science with ExaGeoStat https://github.com/ecrc/exageostat 19 / 40

https://github.com/ecrc/exageostat


I. Spatial Statistics Overview

Covariance Parameter Estimation

Variograms
Fast

Likelihood-based methods
Good theoretical properties
Generally better performance
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I. Spatial Statistics Overview

Variograms

Consider a stationary (or isotropic) random field Z
with a covariance function C

var{Z (s1) − Z (s2)} = var{Z (s1)} + var{Z (s2)} − 2cov{Z (s1), Z (s2)}
= 2C(0) − 2C(s1 − s2)

Denoting γ(h) = C(0) − C(h), we call γ(h) a semivariogram and
2γ(h) a variogram
Properties: γ(0) = 0, γ(−h) = γ(h)
If Z is isotropic, γ(h) = γ0(∥h∥)
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I. Spatial Statistics Overview

Draw and Estimate Variograms

For simplicity, we assume stationarity and isotropy
First, for every possible location pairs (s i , s j), calculate the distance
hij = s i − s j between them and the difference between the observed
data on them, i.e., {Z (s i) − Z (s j)}2. Plot {Z (s i) − Z (s j)}2 against
hij for all location pairs, we get a variogram cloud.
Then bin the distances H = {hij} = ∪l=1,...,LHl . In each bin, take the
average of distances, e.g., hl = N−1

hl

∑
hij ∈Hl

hij and take the average
of the squared differences
Empirical estimator (Matheron):

2γ̂(hl) = 1
Nhl

∑
s i −s j ∈Hl

{Z (s i) − Z (s j)}2
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I. Spatial Statistics Overview

Draw and Estimate Variograms
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I. Spatial Statistics Overview

Estimate Covariance Parameters via Variograms

Suppose 2γ(h; θ) is the true variogram and we have empirical
variogram values at L distance lags: 2γ̂(hi), i = 1, . . . , L
We assume γ̂(hi) = γ(h; θ) + e(h) and E{e(h)} = 0
R(θ)ij := cov{e(hi), e(hj)}
γ̂ =

(
γ̂(h1), . . . , γ̂(hL)

)⊤
γ(θ) =

(
γ(h1; θ), . . . , γ(hL; θ)

)⊤
θ̂ = argminθ{γ̂ − γ(θ)}⊤R(θ)−1{γ̂ − γ(θ)}
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I. Spatial Statistics Overview

Various Least Squares in Variograms Estimation

Ordinary least squares (OLS):

R(θ) = ϕ2IL

Weighted least squares (WLS):

R(θ) = diag
(
var{2γ̂(h1)}, . . . , var{2γ̂(hL)}

)

where var{2γ̂(hi)} ≈ 2{2γ(hi)}2

|N(hi)|
Generalized least squares (GLS) considers the correlation between
e(hi) and e(hj); details omitted here
In practice, OLS or WLS commonly used for computational reasons
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I. Spatial Statistics Overview

Likelihoods

For simplicity, we focus on zero-mean stationary Gaussian random fields
The log-likelihood for n locations:

ℓ(θ) = −n
2 log(2π) − 1

2 log |Σ(θ)| − 1
2Z⊤Σ(θ)−1Z

where

Z =

 Z (s1)
...

Z (sn)

 , Σ(θ) =

 C(s1, s1; θ) . . . C(s1, sn; θ)
... . . . ...

C(sn, s1; θ) . . . C(sn, sn; θ)


Log determinant and linear solver require a Cholesky factorization of
the given covariance matrix Σ(θ)
Cholesky factorization requires O(n3) floating point operations and
O(n2) memory
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I. Spatial Statistics Overview

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimator

θ̂ = argmax
θ

ℓ(θ)

= argmin
θ

{log |Σ(θ)| + Z⊤Σ(θ)−1Z}
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I. Spatial Statistics Overview

Simulated Data Example
Zero-mean random process Z on [0, 1] × [0, 1] with 100 randomly chosen
observation sites s1, . . . , s100. Covariance:

C(h) = exp(−∥h∥/0.2) + 0.1 × 1{h=0}
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I. Spatial Statistics Overview

Simulated Data Results

True model:

C(h) = exp(−∥h∥/0.2) + 0.1 × 1{h=0}

MLE result:

C(h) = 0.86 exp(−∥h∥/0.26) + 0.067 × 1{h=0}

Variogram OLS result:

C(h) = 0.096 exp(−∥h∥/0.0026) + 0.98 × 1{h=0}

With only 100 data points, we may not expect both methods to
estimate the true parameters perfectly. However, we clearly see
variogram OLS performs much worse than MLE
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I. Spatial Statistics Overview

More Simulated Data Example

Exponential variogram: 2γ(h) = 1 − exp(−h/θ) with θ = 0.25
Mean-zero GP generated at 400 random locations in unit square
Estimate θ by OLS, WLS, MLE with 1000 replicates
Functional boxplots (Sun and Genton, 2011)
Note: no outlier detection
(the factor is set to be large in order to see the variability better)
More in Yan and Genton (2018)
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Prediction

For Gaussian random fields, kriging coincides with the conditional mean(
Z

Z (s0)

)
∼ Nn+1

(
0,

(
Σ(θ) k(θ)
k(θ)⊤ C(s0, s0; θ)

))

where k(θ) =
(
C(s1, s0; θ), . . . , C(sn, s0; θ)

)⊤
The conditional distribution is

Z (s0)|Z ∼ N
(
k(θ)⊤Σ(θ)−1Z , C(s0, s0; θ) − k(θ)⊤Σ(θ)−1k(θ)

)
Solution of system of linear equation Σ(θ)−1Z also needs a Cholesky
factorization of Σ(θ)
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When Size n of Datasets Becomes Large
O(n3) floating point operations and O(n2) memory for exact
computations of Cholesky factorization

High-Performance Computing (HPC) can help when n is large
ExaGeoStat software: https://github.com/ecrc/exageostat

Note: n = 1′000′000 then n3 = 1018= 1 billion billions

ExaGeoStat for:
1 Likelihood inference/learning for Matérn covariance function (+others)
2 Spatial kriging (interpolation)
3 Random field simulations

Various approximation methods have been proposed in literature to
ease computation & memory burden

2021/2022/2023 KAUST Competitions on Spatial Statistics for
Large Datasets investigate the performance of different
approximation methods with large synthetic data generated by
ExaGeoStat
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Composite Likelihood Methods
Composite likelihood:

LC
(
θ; Z (s1), . . . , Z (sn)

)
=

K∏
k=1

L
(
θ; Z (sk1), . . . , Z (skjk

)
)wk

Composite conditional likelihood under Vecchia’s approximation:

LC
(
θ; Z (s1), . . . , Z (sn)

)
=

n∏
k=1

f
(
Z (sk) | {Z (s i) : i < k, s i ∈ N(sk)}; θ

)
Composite pairwise likelihood:

LC
(
θ; Z (s1), . . . , Z (sn)

)
=

n−1∏
k=1

n∏
i=k+1

f
(
Z (sk), Z (s i); θ

)
References:
1. Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical
Society: Series B (Methodological) 50(2), 297–312.
2. Varin, C. (2008). On composite marginal likelihoods. Advances in Statistical Analysis 92(1), 1–28.
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Low-rank Methods

Low-rank methods
predictive process

a small set of knots s∗
1 , . . . , s∗

n∗

the predictive process Z̃ (s) approximates the original process Z (s) as

Z̃ (s) = E{Z (s) | Z (s∗
1), . . . , Z (s∗

n∗)}
= c⊤Σ∗−1Z∗

where Z∗ =
(
Z (s∗

1), . . . , Z (s∗
n∗)
)⊤, c = cov(Z (s), Z∗)⊤,

Σ∗ = var(Z∗)
fixed rank kriging, etc.

Reference: Banerjee, S., A. E. Gelfand, A. O. Finley, and H. Sang (2008). Gaussian predictive process models for large spatial
data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70(4), 825–848.
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Sparse Matrix Methods

Induced sparse covariance or precision matrix
covariance tapering

C̃(·, ·) = C(·, ·)Ctaper(·, ·), where Ctaper(·, ·) is a covariance function
with compact support
Sparsity is induced in the approximate covariance matrix

Gaussian Markov Random Field (GMRF)
Assumed to be conditional dependent on neighbors only
Sparsity is induced in the approximate precision matrix

References:
1. Furrer, R., Genton, M. G., and Nychka, D. (2006), Covariance tapering for interpolation of large spatial datasets. Journal of
Computational and Graphical Statistics 15(3), 502-523.
2. Kaufman, C. G., M. J. Schervish, and D. W. Nychka (2008). Covariance tapering for likelihood-based estimation in large
spatial data sets. Journal of the American Statistical Association 103(484), 1545-1555.
3. Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for latent Gaussian models by using integrated
nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71(2), 319–392.
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Competitions on Spatial Statistics for Large Datasets

Goal: investigate the performance of different approximation
methods with large synthetic datasets generated by ExaGeoStat

Through the competition, we can better understand when each
approximation method is adequate

The full datasets with one million locations are publicly available and
act as benchmarking data for future research

The exact MLEs and lowest RMSEs achieved by researchers worldwide
are released so that other/new methods can be easily compared

Large-Scale Spatial Data Science with ExaGeoStat https://github.com/ecrc/exageostat 36 / 40

https://github.com/ecrc/exageostat


I. Spatial Statistics Overview

In 2021: Gaussian and non-Gaussian

Launched November 23, 2020; Ended February 1, 2021

29 research teams worldwide registered and 21 teams successfully
submitted results

Competition consists of four parts:
Task Data model Data size

1a GP estimation GP 90,000
1b prediction GP predict 10,000 conditional on 90,000
2a prediction Tukey g-and-h predict 10,000 conditional on 90,000
2b prediction GP & Tukey g-and-h predict 100,000 conditional on 900,000

Metric for GP estimation:
Mean Loss of Efficiency (MLOE) and
Mean Misspecification of the Mean Square Error (MMOM)

Metric for prediction: RMSE
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In 2021: Gaussian estimation/prediction results

Sub-competition Submission Score Rank

1a

ExaGeoStat(estimated-model) 154 0
SpatStat-Fans 156 1

GpGp 186 2
RESSTE(CL/krig) 229 3

1b

ExaGeoStat(true-model) 72 0
RESSTE(CL/krig) 78 1

ExaGeoStat(estimated-model) 79 1.5
HCHISS 93 2

Chile-Team 113 3

Reference:
Huang, H., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2021), Competition on spatial statistics for large
datasets (with discussion), Journal of Agricultural, Biological, and Environmental Statistics, 1-16.
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In 2022: Nonstationary, space-time, multivariate
Launched March 1, 2022; Ended May 1, 2022
20 research teams worldwide registered
Hosted the competition on the Kaggle machine learning and data
science platform

Sub- Setting True # of Training Testing
comp Data Model Datasets Data Size Data Size

1a Univariate GP with 2 90K 10K
Nonstationary Nonstationary

Spatial Mean or Cov
1b Univariate GP with 2 900K 100K

Nonstationary Nonstationary
Spatial Mean or Cov

2a Univariate GP with 9 90K 10K
Stat. ST Non-Separable Cov

2b Univariate GP with 9 900K 100K
Stat. ST Non-Separable Cov

3a Bivariate GP with 3 45K 5K
Stationary Parsimonious/Flexible

Spatial Matérn Cross-Cov
3b Bivariate GP with 3 450K 50K

Stationary Parsimonious/Flexible
Spatial Matérn Cross-Cov

Reference:
Abdulah, S., Alamri, F., Nag, P., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2022), The second competition on
spatial statistics for large data sets, Journal of Data Science, 20, 439-460.
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In 2023: Irregular locations, confidence/prediction intervals

Launched February 1, 2023; Ended May 1, 2023

11 research teams worldwide registered

Five different designs considered for the locations of the observations:
1. Chessboard; 2. Left-bottom; 3. Satellite; 4. Clusters; 5. Regular

Sub-comp Model Target # designs Training Testing
1a Gaussian Estimation 5 90K –

Matérn (95% conf interval)
1b Gaussian Estimation 5 900K –

Matérn (95% conf interval)
2a Gaussian Prediction 5 90K 10K

Matérn (95% pred interval)
2b Gaussian Prediction 5 900K 100K

Matérn (95% pred interval)

Reference:
Hong, Y., Song, Y., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2023), The third competition on spatial
statistics for large datasets, Journal of Agricultural, Biological, and Environmental Statistics, 28, 618-635.
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