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1 Motivation

Estimation of extreme conditional quantiles is often required for risk assessment of natural haz-

ards in climate and geo-environmental sciences and for quantitative risk management in statistical

finance, econometrics, and actuarial sciences. For example, Cooley et al. (2007) estimate high pre-

cipitation return levels (i.e., high marginal quantiles) over a region of Colorado using a Bayesian

hierarchical model that incorporates geographical and climatic covariates, and Cannon (2010);

Gardes and Girard (2010); Velthoen et al. (2019) build flexible non-stationary models for hydrocli-

matological extremes; in the same vein, Jóhannesson et al. (2022) estimate spatio-temporal return

levels of annual peak river flows to assess flood risk over the UK, while Pasche and Engelke (2022)

estimate high quantiles of river discharges to forecast flood risk in the Swiss Aare catchment;

Chavez-Demoulin and Davison (2005) build smooth covariate-dependent extreme-value models for

low temperatures in the Swiss Alps, and Zhong et al. (2022) fit spatial extremes models to assess the

spatio-temporal variability of extreme European heatwaves, in terms of their intensity, frequency,

and spatial extent; Richards and Huser (2022); Richards et al. (2023); Koh et al. (2023) build

models to predict wildfire occurrences and extreme sizes over the US and the Mediterranean basin,

which they then exploit to compute compound hazard estimates and assess climate change im-

pacts; similarly, Yadav et al. (2023) assess landslide hazard by fitting marked point process models

designed to accurately capture both moderate and high quantiles of the landslide size distribution

as a function of fixed covariates effects and unobserved random effects. As with environmental

applications, the estimation of high quantiles (and extensions thereof) also plays a key role in the

assessment of tail risk in finance Chavez-Demoulin and Guillou (2018); Daouia et al. (2019, 2023b),

where the quantiles are often referred to as “Value-at-Risk” (VaR), and in insurance, for assessing

risk associated with extreme claims and setting insurance premiums Daouia et al. (2022, 2023a).

Further applications and case studies are discussed in Part VI of this handbook (see, e.g., Chap-

ters 25–27 for applications to natural hazards and Chapters 28–29 for applications to finance and

the insurance industry).

In most of the above real data examples, interest lies in estimation of high (conditional) quantiles

that exceed any past observations. Therefore, to extrapolate further into the tail, it is crucial to

use a statistical framework that is well-adapted and especially designed for this purpose, and

here extreme-value theory plays a key role. This chapter, which can be read as a follow-up of

Chapters 6 and 20, precisely details how extreme quantile regression may be performed using

theoretically-justified models, and how modern deep learning approaches can be harnessed in this
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context to enhance the model’s performance in complex high-dimensional settings. While a variety

of extreme-value techniques have been advocated for this purpose, we here focus on parametric

quantile regression, exploiting well-established extreme-value distributions. Similarly, while several

machine learning approaches have been combined with regression in the literature, we argue that

deep learning methods based on neural networks with suitable architectures are ideally placed to

tackle truly high-dimensional regression problems (where the number of covariates is large). The

power of deep learning combined with the rigor of theoretically-justified extreme-value methods

opens the door to efficient extreme quantile regression, in cases where both the number of covariates

and the quantile level of interest can be simultaneously “extreme”.

The rest of the chapter is organised as follows: Section 2 gives a gentle introduction to parametric

extreme quantile regression, while Section 3 introduces deep regression and basic neural networks,

and details how deep extreme quantile regression models may be built and trained, with some

final comments on software availability. Section 4 discusses a small simulation study to compare

various statistical and machine learning competitors, while Section 5 illustrates the methods by

application to the estimation of European precipitation return levels. Section 6 finally discusses

further important topics, and concludes with some perspectives for future research.

2 An Introduction to Extreme Quantile Regression

After introducing the general quantile regression setting in Section 2.1, we briefly explain in Sec-

tion 2.2 why classical non-parametric quantile regression methods fail when interest lies in the

extreme tails; we then review parametric extreme quantile regression in Section 2.3 and finally

make the case for using deep learning in that context in Section 2.4. For a more detailed review of

classical parametric regression models for extreme values, see Chapter 6.

2.1 General Setting

We consider the setting where Y ∈ R is a continuous random variable of interest, referred through-

out as the response variable, and which has distribution function FY (y) = P(Y ≤ y). For

τ ∈ (0, 1), the τ -quantile of Y is Q(τ) := F−1
Y (τ) = inf{y : FY (y) ≥ τ}, where F−1

Y (·) denotes the
inverse of FY (·). We now introduce a q-dimensional vector of continuous-valued covariates or “pre-

dictors”, denoted by X = (X1, . . . , Xq)
T ∈ Rq. In a regression setting, we seek to relate covariates

X to Y through the conditional distribution function

FY |X(y | x) = P(Y ≤ y | X = x).

Quantile regression describes the act of relating X to a specific quantile of Y , i.e., estimating

the conditional τ -quantile of Y , given observed covariates X = x, defined by

Qx(τ) := F−1
Y |X(τ | x) = inf{y : FY |X(y | x) ≥ τ}. (1)

Modelling of (1) requires specification of the functional form for Qx(τ) (viewed as a function of

the input x for fixed τ). Popular approaches specify (1) to be a linear or additive function (of the

components of x), up to some non-linear transformation via a link function. For a general overview

of quantile regression, see Koenker (2005) or the more recent review by Koenker et al. (2017).

Extreme quantile regression refers to scenarios where τ is either very close to one, such that

Qx(τ) is typically larger than all observations of Y | (X = x) available for inference, or τ is close
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to zero, where the converse holds; in short, Qx(τ) is often beyond the range of the observed data.

Without loss of generality, we focus on the case where τ is close to one, and thus consider estimation

of the upper-tails of Y | (X = x) only. Formally, Chernozhukov et al. (2017) define extreme quantile

regression by considering estimation of Qx(τ) for a sequence of quantile levels. Let n denote the

sample size of observation pairs {(y1,x1), . . . , (yn,xn)}, and let {τn}∞n=1 be a sequence of quantile

levels which are dependent on n. Extreme conditional quantiles are those for which τn → 1 and

n(1− τn) → k ∈ [0,∞) as n → ∞, where n(1− τn) denotes the expected number of exceedances of

yi above Qxi(τn). Hence, there are a finite (or possibly zero) number k of exceedances of Qxi(τn)

in the sample as n → ∞. Such data scarcity causes standard non-parametric methods, i.e., those

not adapted for the tails, to perform poorly when τn is close to one. This issue is further discussed

in the next section.

2.2 Why Not Use Classical Non-Parametric Methods?

In classical least squares regression, the conditional expectation E[Y | X = x] is found by minimising

a squared error prediction loss. The analogue in quantile regression is the minimisation problem

Qx(τ) := argmin
β

E[ρτ (Y − β) | X = x], (2)

where ρτ (u) := u(τ−1{u < 0}) is the asymmetric absolute deviation function Fox and Rubin (1964),

more commonly termed the “pinball” Koenker and Bassett Jr (1978) or “quantile check” loss (see

Gneiting (2011) for alternative nomenclature). In practice, one models Qx(·) by constructing a

set of quantile functions that map x to some real value; we denote such a set of functions by Q,

with feasible non-decreasing quantile functions as qτ (·) ∈ Q. In classical non-parametric quantile

regression, estimates Q̂x(τ) of the conditional τ -quantile of Y | (X = x) are then yielded by

minimising empirical estimates of (2) over observation pairs, that is,

Q̂x(τ) := argmin
qτ∈Q

1

n

n∑
i=1

ρτ{yi − qτ (xi)}. (3)

The method is referred to as “non-parametric” in the sense that it does not assume any particular

parametric probability model for Y | (X = x), since the loss function ρτ is quantile-specific and does

not impose any structure across the different values of τ . Choices of quantile functions qτ (·) ∈ Q
can, however, be parametric, semi-parametric, or non-parametric themselves (as a function of x),

and many options have been proposed in the literature. The de facto standard is the linear model,

popularised by Koenker and Bassett Jr (1978). More flexible alternatives which utilise additive

functions, such as splines, have also been proposed Koenker et al. (1994); Fasiolo et al. (2021). Due

to an ever-increasing supply of high-dimensional and massive datasets, more recent proposals have

adopted machine learning algorithms Zhong and Wang (2023), which benefit from the flexibility

and computational scalability not offered by linear or additive models, and represent qτ (·) as a

highly non-linear, non-additive function.

However, when interest lies in estimating extreme quantiles and extrapolating to values of τ that

go much beyond 1 − 1/n, classical non-parametric methods that rely on solving the minimisation

problem (3) fail miserably, whatever the generality of Q and the flexibility or functional form of

qτ (·). To illustrate this well-known problem, we consider a simple unconditional setting without

covariates, and simulate random samples Y1, . . . , Yn ∼ FY of size n = 1000, independently from four
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distributions FY with increasing tail heaviness. These are the Normal distribution with zero mean

and unit variance (N(0, 1)), the Gamma distribution with scale 1/4 and shape 4 (Gamma(0.25, 4)),

the log-normal distribution with zero log-mean and unit log-variance (logN(0, 1)), and the Fréchet

distribution with shape 3 (Fréchet(3)). For each random sample, we compute empirical τ -quantiles

with τ ∈ [0.99, 0.99999]; that is, the exceedance probability ranges from 10−2 (with about 10

exceedances among the n observations) to 10−5 (with no exceedances most of the time). When τ

is larger than 1− 1/n, the empirical τ -quantile will always be estimated as the sample maximum,

max(Y1, . . . , Yn), which is independent of τ . Therefore, the bias of the empirical quantile estimator

is expected to grow with τ .

Figure 1 shows the results of this simulation study. The dashed black line shows the empirical τ -

quantile, averaged across 104 simulations, while the grey shaded area shows its sampling variability

obtained through the 2.5% and 97.5% quantiles across the simulated replicates. In all cases, the

empirical quantile estimates are reasonable up to τ = 1−1/n = 1−10−3 but they quickly deteriorate

as τ increases further. In fact, the estimator becomes increasingly biased since it is constant beyond

that probability level. While alternative smoother empirical estimators are available, they are

always expressed as convex combinations of order statistics, and thus will display similar drawbacks.

These results illustrate clearly the crucial need for extreme quantile regression methods that rely on

extreme-value theory for tail extrapolation. To illustrate the benefit of “parametric” extreme-value

regression techniques in this context, we also fit, for each simulated dataset, the generalised Pareto

(GP) distribution to threshold exceedances above the empirical 95% quantile and then used the

fitted model to perform tail extrapolation; see Chapters 2–3 (as well as Section 2.3 or Davison and

Huser (2015)) for further details on the definition and justification of the GP distribution, as well

as other extreme-value models. The results from the parametric GP fits are displayed in Figure 1

using solid colored curves (averaged across 104 simulations) and colored shaded areas (delimiting

the 2.5% and 97.5% quantiles of the estimates across the 104 simulated replicates). While the

uncertainty of GP-based quantile estimates grows quite fast as τ increases, estimates are typically

more accurate than non-parametric estimates and display a much smaller bias for large τ .
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Figure 1: Empirical and GP-based τ -quantile estimates plotted against 1−τ with τ ∈ [0.99, 0.99999].
Estimates are from random samples of size n = 1000, in four cases: N(0, 1) (top left),
Gamma(0.25, 4) (top right), logN(0, 1) (bottom left), and Fréchet(3) (bottom right). From 104

simulation replicates, empirical quantiles are displayed through their average (dashed black) and
their 95% variability (grey shaded envelope), while GP-based estimates are displayed through
their average (solid colored) and their 95% variability (colored shaded envelope). The thick di-
agonal line corresponds to a perfect fit. The grey dotted horizontal line represents the value of
E[max(Y1, . . . , Yn)] in each case.
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