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In this chapter, we illustrate the use of split bulk–tail models and subasymptotic models mo-

tivated by extreme-value theory in the context of hazard assessment for earthquake-induced land-

slides. A spatial joint areal model is presented for modeling both landslides counts and landslide

sizes, paying particular attention to extreme landslides, which are the most devastating ones.

1 Introduction

Statistics of extremes has been used extensively in climate science for the modeling of low-

probability high-impact events, including natural hazards such as heavy precipitation (Katz et al.,

2002; Cooley et al., 2007; Huser and Davison, 2014; de Fondeville and Davison, 2018), extreme

heatwaves (Davison and Gholamrezaee, 2012; Winter and Tawn, 2016; Zhong et al., 2022; Vikki et al.,

2023; Zhang et al., 2023), and strong windstorms or hurricanes (Opitz, 2016; Risser and Wehner,

2017; Dawkins and Stephenson, 2018; Huser et al., 2021), among others; such extreme-value models

are often developed with the ultimate ambition to improve the state-of-the-art in performing hazard

and/or risk assessment and mitigation, and in attributing specific catastrophic extreme events to

human influence under climate change. By contrast, the application of extreme-value theory (EVT)

and statistics to the modeling and prediction of geophysical processes, such as devastating landslides

or earthquakes, is sparser in the literature, perhaps due to the different type of data involved and

the added modeling difficulties that come with it. Unlike climate data that are often measured at

fixed locations (e.g., monitoring stations, or on a spatial grid with climate model outputs) and regu-

lar intervals (e.g., hourly or daily) over a period of time, the exact location and timing of landslides

and earthquakes are typically unknown before they occur—they are thus often treated as random;

moreover, the exact conditions and triggering mechanisms often differ for each event, which im-

plies that the data are rarely replicated (unless some kind of spatio-temporal aggregation is used),

making any extreme-value analysis more challenging, and that they typically require other kinds of

specialized statistical models such as point processes (Møller et al., 1998; Illian et al., 2008). Never-

theless, statistical methods based on EVT have still been used in data-driven geophysical sciences,

e.g., for estimating the maximum earthquake magnitude (Beirlant et al., 2019; Darzi et al., 2023),

for probabilistic seismic hazard analysis (Dutfoy and Senfaute, 2022), as well as for landslide hazard
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mapping over space (Yadav et al., 2023; Dahal et al., 2024); see also Kiriliouk et al. (2019) who fit

a multivariate extreme-value model to extreme rainfall data, in order to (indirectly) understand

the probability of rainfall-induced landslides through the rainfall intensity–duration thresholds for

landslide initiation established by Guzzetti et al. (2007).

In this chapter, we focus on the spatial modeling of earthquake-induced landslides (Lombardo et al.,

2019), and present a general Bayesian hierarchical modeling framework that has been used in the

literature (in various forms and contexts, and with some variations) for jointly modeling multiple oc-

currences and sizes of various natural phenomena over space (Pimont et al., 2021; Koh et al., 2023;

Yadav et al., 2023). While all (big or small) future landslides matter for appropriate hazard assess-

ment, extreme landslides are particularly devastating and should therefore be given strong attention

in modeling. In the model construction pipeline, we thus advocate using probability distributions

motivated by EVT that can adequately capture the upper tail behavior, while simultaneously pro-

viding a good fit in the bulk. Specifically, we here review and compare two distinct approaches for

modeling the full range of landslide sizes: (i) split (also called ‘mixture’, ‘spliced’, ‘piecewise’, or ‘hy-

brid’) bulk–tail models (Behrens et al., 2004; Carreau and Bengio, 2009; Scarrott and MacDonald,

2012; Opitz et al., 2018; Castro-Camilo et al., 2019; Pimont et al., 2021; Koh et al., 2023), wherein

the upper tail is modeled with the asymptotically-justified generalized Pareto (GP) distribution (see

Davison and Smith (1990); Davison and Huser (2015) and Chapter 2 for more details) and the bulk

is modeled using another, essentially arbitrary distribution; and (ii) ‘subasymptotic’ distributions

(see, e.g., Naveau et al. (2016); Yadav et al. (2021, 2022); Stein (2021a,b), and Chapter 5) captur-

ing the lower tail and the upper tail flexibly in compliance with EVT with a smooth transition

in between. While there are several possible subasymptotic distributions, we focus in this chapter

on the extended generalized Pareto (eGP) distribution (Papastathopoulos and Tawn, 2013), which

is a parsimonious parametric model that has found various applications in the study of natural

hazards including extreme precipitation (Naveau et al., 2016), wildfires (Cisneros et al., 2024), and

landslides themselves (Yadav et al., 2023). To streamline the analysis and the discussion, we here

consider only one of the simplest eGP distributions, but see Chapter 5 for more details on other

possible options and extensions. From a hazard assessment perspective, both landslide sizes and

landslide counts (modeled using the Poisson distribution) are important (see Section 2 for details),

and they are here modeled jointly using a latent Gaussian model, in which fixed effects and shared

spatially-structured effects can be easily incorporated at the latent level to capture complex spatial

trends, spatial and cross-dependencies, as well as covariate effects. Joint modeling of occurrences

and sizes is especially key for properly assessing the uncertainty of hazard estimates, which are

obtained as a function of both elements.

In this chapter, we showcase the versatility of the proposed general modeling framework using

an inventory comprising thousands of landslides simultaneously initiated by the devastating 2008

Wenchuan earthquake in China, going beyond Lombardo et al. (2019) who studied the spatial

distribution of landslides triggered by the same earthquake but did not consider the modeling of

landslide sizes. Incorporating physical knowledge into probability models is important to improve

both model fit and interpretability, and is one of the recommendations listed in the opinion piece

by Huser et al. (2024); using informative geophysical and geomorphological covariates, and defining

the model at the ‘slope unit’ resolution (more details in Section 3), are two possible ways to achieve

this goal. Therefore, in our case study, both landslides and covariates are observed at the slope unit

level, thus requiring a joint areal model for occurrences and sizes, instead of a continuous-space

marked point process model. This chapter aims at illustrating this extreme-value-based modeling

framework for the study of landslide data, and to compare the pros and cons of split bulk–tail
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models with subasymptotic models in practice. While we find no uniformly-better approach in

this case, we argue that the eGP distribution has an overall better performance and is a more

natural modeling solution in general. We also discuss how to perform scalable Bayesian inference

in this framework based on a customized efficient Markov chain Monte Carlo (MCMC) algorithm,

coupled with latent random effects with a sparse precision matrix (here, chosen with an intrinsic

conditional autoregressive (iCAR) probabilistic structure; see Besag (1974)). The selection of highly

informative covariates (e.g., peak ground acceleration) that can potentially replace the use of latent

spatial effects is also discussed, and various latent model structures are compared.

The rest of this chapter is structured as follows: Section 2 gives a more precise definition of

the ‘hazard’ according to the geoscience literature. Section 3 provides details on the Wenchuan

landslide data inventory used in our case study. Section 4 presents the modeling framework and

MCMC-based Bayesian inference. Section 5 discusses results for the Wenchuan data application.

Finally, Section 6 concludes with a summary of some key points.

2 Hazard definition

Although processes such as floods, earthquakes, or landslides largely differ in their physical manifes-

tation, geophysical and statistical properties, and their impacts, international guidelines on natural

hazard prediction share some core requirements (Mitchell, 1993). Broadly speaking, hazard predic-

tion should reflect where and when (or how frequently) a future natural hazard might occur, and if

it does, how big (or how destructive) it might be. We also stress that in the geoscience literature,

‘risk assessment’ has a specific meaning that goes beyond ‘hazard assessment’ by additionally en-

capsulating the exposure and vulnerability of infrastructure and/or people at risk, and estimating

the associated economic, societal and/or environmental costs. In this chapter, we thus distinguish

these different notions and adopt the terminology commonly used in geoscience.

The first requirement (‘where’) involves the notion of susceptibility, which indicates how likely

a given portion of the landscape is to undergo a given hazard (Karlsson et al., 2017; Nicu et al.,

2022). Statistical models used to address this question in the literature include logistic regression

models for presence-absence data, Poisson regression models for count data, or more advanced point

process models such as log-Gaussian Cox processes (see, e.g., Lombardo et al. (2018, 2020)).

The second requirement (‘when’ or ‘how frequently’) relates to the return period of a given

hazard and reflects its recurrence over time. The frequency of such devastating phenomena is

often difficult to model because temporal replicates are rarely available and rich spatio-temporal

inventories are scarce. Moreover, landslides often occur as part of a sequential compound extreme

event (e.g., after a major earthquake or heavy rain), which also complicates the estimation of their

return period as this requires an understanding of the frequency of the main triggering factor(s).

This aspect of hazard assessment is, therefore, often the most neglected one (but see Dahal et al.

(2024) for a recent attempt to take it into account in a study of rainfall-induced landslides).

The third requirement (‘how big’ or ‘how destructive’) involves the notion of intensity of an

event, which indicates the energy and level of threat associated with a given hazard when it occurs

(Peng et al., 2005; Hungr, 2018). Note this notion of intensity differs from that classically used in

statistics with point process models.

In the context of landslides, David J. Varnes and the International Association of Engineering

Geology, Commission on Landslides and Other Mass Movements on Slopes defined the landslide

hazard more specifically through statistical terms as “the probability of occurrence within a specified

period and a given area of a potentially damaging phenomenon” (Varnes, 1984). This definition was
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later updated by Guzzetti et al. (1999) to explicitly include the intensity of the event. While this

general definition was proposed in the context of landslides, the same formulation can be interpreted

more broadly and applied similarly in other contexts with various types of natural hazards.

In Section 4, we present an extreme-value-based latent Gaussian modeling pipeline that complies

with the first and third requirements of the hazard definition. That is, the proposed model can be

used to jointly estimate both the susceptibility and the intensity of a natural phenomenon—here,

in the context of earthquake-induced landslides. As there are different ways to characterize the

intensity of a natural phenomenon, there is no clear consensus in the literature on how to represent

and model it. For instance, flood intensity (Vojtek and Vojteková, 2016) is usually expressed as a

function of the water height (e.g., Van den Bout et al. (2023)) or peak flow (the maximum rate of

discharge; Formetta et al. (2021)). Earthquake intensity (Hough, 2014) is commonly expressed as

the peak of either the displacement (Trugman et al., 2019), velocity (Dahal et al., 2023), or accel-

eration (Murphy and O’brien, 1977) experienced at a given location. Similarly, landslide intensity

(Lari et al., 2014) can also be expressed in multiple ways: for instance, the velocity (He et al., 2023)

or kinetic energy (Pudasaini and Krautblatter, 2021) associated with a failing mass, the force that

the landslide body may exert onto an object (Tang et al., 2014), its volume (Jaboyedoff et al.,

2020), planimetric area (Di Napoli et al., 2023) or other shape indices (Rana et al., 2023), are all

accepted as valid ways to describe the landslide intensity. However, most of these elements cannot

be measured in the context of large landslide populations. Velocities over large landscapes are

measurable through Interferometric Synthetic Aperture Radar (InSAR) but only for slow move-

ments (Ahmad et al., 2024). Kinetic energy and force can only be estimated through demanding

numerical simulations (Pudasaini and Krautblatter, 2022), and their real measurement is condi-

tional on the availability of very expensive instruments installed on a slope for monitoring purposes

(Mazzanti et al., 2015). Similarly, landslide volumes cannot be measured unless topographic data

are available before and after the failure (Tseng et al., 2013). Among these landslide intensity

parameters, the landslide area (or derivatives thereof) is the easiest one to collect because it is a

byproduct of any rigorous landslide mapping procedure (Lombardo et al., 2021). Hence, out of all

the metrics listed above, the landslide area is the most relevant one to support statistical analyses.

In the case study presented in this chapter, we model the square root of the landslide area (easily

measurable through remote sensing), which roughly describes the ‘diameter’ of the affected area

and can be understood as a proxy for the landslide size and its destructiveness.
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