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This chapter illustrates how tools from univariate and multivariate statistics of extremes can

complement classical methods used to study brain signals and enhance the understanding of brain

activity and connectivity during specific cognitive tasks or abnormal episodes, such as an epileptic

seizure.

1 Introduction

Understanding the dynamics of how the brain works is one of the primary goals in neuroscience.

Given various modalities for collecting brain data, e.g., functional magnetic resonance imaging

(fMRI) and electroencephalography (EEG), a wide range of research has led to many interesting

findings and practical developments in the medical community. Some applications involve predicting

epileptic seizure onset (Alotaiby et al., 2014; Boonyakitanont et al., 2020), classification of patients

with neurophysiological disorders from healthy subjects (Mohammadi et al., 2016; Ieracitano et al.,

2020) and advancements on the so-called brain-computer interfaces (BCI), machines that decipher

brain activity and translate them to physical actions such as controlling robotic arms for people with

paralysis (Ang et al., 2015; Gillini et al., 2021; Altaheri et al., 2023). Yet, despite having evidence

on the heavy-tailed nature of the human brain (Freyer et al., 2009; Roberts et al., 2015) and the

fact that large amplitudes of brain electrical signals are often associated with cognitive activity or

disruptions (MacNeilage, 1966; Brismar, 2007; Sauseng and Klimesch, 2008), most of the current

methods for analyzing brain data deal with inference on central trends, focusing on describing the

bulk of the data distribution. Such practice neglects the tail behavior of the complex mechanisms

of brain physiological processes, which may arguably provide more informative scientific insights,

especially in cases of alterations in brain functional activity due to some mental illness.

Although limited so far, several papers in the literature have used extreme value theory (EVT) in

the analysis of brain data. For applications in MRI data, Roberts (2000) developed novelty detection

using EVT, while Dawkins et al. (2019) incorporated EVT in the derivation of the theoretical

properties of nearest-neighbor distance distributions. In EEG data analysis, Karpov et al. (2022)

proposed machine learning approaches for seizure detection that are inspired by EVT, and Vrba

and Mareš (2020) developed the extreme seeking entropy algorithm for novelty detection. There

are also applications of EVT to epilepsy data (Luca et al., 2014; Pisarchik et al., 2018; Frolov et al.,

2019). However, the commonality among these works is the use of extreme value distributions to fit

the margins of the data, which simply serves as a preliminary step prior to the main methodology
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Figure 1: Standard 10–20 EEG scalp topography with 19 channels and decomposition of EEG
recordings into the five standard frequency bands.

(e.g., deep learning algorithm). To our knowledge, the very first paper in brain data analysis

that is “fully” EVT-based is Guerrero et al. (2023), who implemented the conditional extremes

model of Heffernan and Tawn (2004) to investigate the behavior of the signals from a channel given

that a reference channel exhibits extreme amplitudes. We review and apply their methodology in

Section 3.3. However, the application of EVT in neuroscience still requires many developments

and further evidence of its practical usefulness to make an impact in the field and become widely

spread.

The goal of this chapter is to demonstrate how models and techniques in EVT can be utilized

to analyze brain signals, specifically to EEG data, and show that EVT can provide useful insights

into brain abnormalities, e.g., during an epileptic seizure.

1.1 Background

Electroencephalograms (EEGs) are recordings of electrical signals generated during brain activity

that are measured from the cortical surface of the head (Binnie and Prior, 1994; Ombao et al., 2016).

In the recent years, EEG is considered as one of the leading clinical tools for investigating neuro-

logical diseases such as epilepsy (Noachtar and Rémi, 2009; Benbadis et al., 2020), schizophrenia

(O’Sullivan et al., 2006; Haenschel and Linden, 2011) and dementia (Adamis et al., 2005; Al-Qazzaz

et al., 2014; Law et al., 2020), because it is non-invasive, easy to collect, relatively inexpensive, and

accommodates high temporal resolution (up to 1000 Hertz/samples per second) (Lenartowicz and

Loo, 2014). However, since EEGs are measured by placing electrodes on the scalp (see Figure 1),

one limitation is that it has a lower resolution than fMRI data, and that it is highly sensitive to

noise artifacts (which includes muscle movements, eye blinking and electrical surges from devices or

the EEG machine itself). Thus, prior to exploratory analysis and statistical modeling of EEG data,

it is a standard practice to remove such artifacts by applying pre-processing pipelines to improve

the quality of the signals (Kim, 2018).

In addition, EEGs are often characterized as a superposition of random oscillations at var-
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ious frequencies, from slowly oscillating waveforms (low frequency waves) to rapidly oscillating

waveforms (high frequency waves). In practice in neurology and cognitive neuroscience, EEGs

are thought to be composed of different frequency oscillations grouped into five standard wave-

forms/frequency bands commonly called — delta (Ω1: 0.5–4 Hz), theta (Ω2: 4–8 Hz), alpha (Ω3:

8–12 Hz), beta (Ω4: 13–30 Hz), and gamma (Ω5: 30–100 Hz) (Cohen, 2017; Gao et al., 2020;

Ombao and Pinto, 2022; Granados-Garcia et al., 2024). There are numerous evidences that link

these band-specific oscillatory processes to various cognitive functions. For example, low frequency

waveforms are associated with sleep and attention while high frequency oscillations are related to

complex neuronal activation and performance of motor movements (Herrmann et al., 2016). This is

the main reason why most analysis of EEG data rely on spectral decomposition of the signals into

the standard frequency bands through linear filtering (e.g., Butterworth and finite impulse response

filter) or use a wavelet-based approach (Nunez et al., 2016; Fiecas and Ombao, 2016; Ombao et al.,

2016). EVT’s role is to offer additional tools that complement existing methodologies in providing

insights to understanding brain dynamics.

1.2 Motivating Dataset

In this chapter, we illustrate how extreme behavior in EEG data can be rigorously analyzed through

EVT, using a well-studied dataset (Ombao et al., 2005; Schröder and Ombao, 2019; Guerrero et al.,

2023). We consider the EEG recordings are collected from a female patient diagnosed with left

temporal lobe epilepsy whose focal point of seizure often occurs in the temporal area of the left

hemisphere of the brain, closest to the reference channel T3 (see Figure 2). This EEG dataset

contains 500 seconds of recording at a sampling rate of 100 Hz (yielding T = 50,000 time points).

For this dataset, the attending neurologist noted that the seizure onset happens roughly at the

350th second (indexed at time point t = 35,000).

Clearly, the behavior of the EEG signals before the onset of epileptic seizure differs from the

behavior after the onset. One can observe the excessively large (extreme) amplitudes exhibited by

all channels during the seizure episode. This is a natural example of an extreme event in brain

signals which motivates the use of EVT in analyzing such data.

1.3 Chapter organization

The rest of the chapter is organized as follows. An overview of common methodologies for EEG

analysis in the frequency domain is presented in Section 2. In Section 3, we illustrate how uni-

variate extremes modelling of EEG data is performed, and demonstrate how extremal dependence

may be quantified using empirical diagnostics and through the conditional extremes model, thus

complementing existing techniques. Lastly, a brief summary and avenues for future research on the

application of EVT in neuroscience are discussed in Section 4.
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Figure 2: Recorded EEG signals from selected channels during an epileptic seizure episode of a
female patient diagnosed with left temporal lobe epilepsy.
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