
Simulation-based inference:
Any procedure that makes sta-
tistical inference from data
by leveraging information from
simulations of a generative
model.
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Raphaël Huser2

1School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New
South Wales, Australia; email: azm@uow.edu.au

2Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering

Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Abstract

Simulation-based methods for making statistical inference have evolved dramati-
cally over the past 50 years, keeping pace with technological advancements. The field
is undergoing a new revolution as it embraces the representational capacity of neural
networks, optimisation libraries, and graphics processing units for learning complex
mappings between data and inferential targets. The resulting tools are amortised,
in the sense that they allow inference to be made quickly through fast feedforward
operations. In this article we review recent progress made in the context of point
estimation, approximate Bayesian inference, the automatic construction of summary
statistics, and likelihood approximation. The review also covers available software,
and includes a simple illustration to showcase the wide array of tools available for
amortised inference and the benefits they offer over state-of-the-art Markov chain
Monte Carlo methods. The article concludes with an overview of relevant topics and
an outlook on future research directions.
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1 INTRODUCTION

Statistical inference is the process of drawing conclusions on an underlying population
based on an observational sample, and is the cornerstone of evidence-based decision mak-
ing and scientific discovery. This process often relies on a parametric statistical model
with unknown or uncertain parameters. Parameter inference consists in estimating, or
finding a distribution over, these model parameters. When the underlying parametric
model admits a likelihood function that is analytically and computationally tractable, a
suite of likelihood-based methods are available that are well-suited for parameter infer-
ence. However, there are many cases where the likelihood function is either unavailable
or computationally prohibitive (i.e., time consuming to evaluate), but where it is feasible
to simulate from the model; this is the case, for example, with several geophysical models
(e.g., Siahkoohi et al., 2023), epidemiological models (Fasiolo et al., 2016), cognitive neu-
roscience models (Fengler et al., 2021), agent-based models (Dyer et al., 2024), and some
classes of statistical models like Markov random fields (e.g., Besag, 1986) or models for
spatial extremes (e.g., Davison et al., 2012, Huser and Wadsworth, 2022). In such cases,
one often resorts to simulation-based techniques to bypass evaluation of the likelihood
function when making parameter inference. Simulation-based inference requires substan-
tial computing capability, and thus only became a viable solution in the second half of
the 20th century (see Hoel and Mitchell, 1971, Ross, 1971, for early examples). The field
has evolved much since then, due to the dramatic increase in affordable computing power,
and the increased ability to generate, store, and process large datasets.
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Neural network: A flexible,
highly parameterised nonlinear
mapping, constructed using a
composition of simple functions
connected together in a net-
work.

Training: The process of esti-
mating (or “learning”) parame-
ters in a neural network, typi-
cally by minimising an expected
loss using a variant of stochastic
gradient descent.

Several review papers have been published in recent years on simulation-based infer-
ence. The review paper of Cranmer et al. (2020) has a high-level and broad scope, and
gives a succinct summary of several methods ranging from approximate Bayesian compu-
tation (ABC, Sisson et al., 2018) to density estimation (Diggle and Gratton, 1984) and
more recent machine-learning approaches, including some of the neural-network based ap-
proaches we review here. The reviews of Blum et al. (2013) and Grazian and Fan (2020)
focus on ABC methods while those of Drovandi (2018) and Drovandi and Frazier (2022)
additionally review indirect inference (Gourieroux et al., 1993), and Bayesian synthetic
likelihood (BSL, Wood, 2010) approaches to simulation-based inference.

This review paper differs from those available in the existing literature on simulation-
based inference in two ways. First, it exclusively considers simulation-based methods
that incorporate neural networks; the reason for this focus is that neural networks have
become state-of-the-art in high-dimensional modelling due to their representational ca-
pacity (Hornik, 1989) and due to the increased availability of the software and hardware
required to train them. Second, it focuses on neural simulation-based methods that are
amortised, that is, that leverage a feed-forward relationship between the data and the
inferential target to allow for fast inference. The Oxford Languages dictionary defines
amortisation as “the action or process of gradually writing off the initial cost of an as-
set”. In the context of neural amortised inference, the initial cost involves training a
neural network to learn a complex mapping used for inference (e.g., a point estimator,
an approximate posterior distribution, an approximate likelihood function, etc.). Once
the neural network is trained, parameter inferences can then be made several orders of
magnitude faster than classical methods (e.g., Markov chain Monte Carlo (MCMC)).
Hence, the initial cost of training the network is “amortised over time”, as the trained
network is used over and over again for making inferences with new data (see the sidebar
titled The Power of Amortisation). Amortised inference is also associated with the way
humans operate, reusing demanding inferences made in the past to make quick decisions
(Gershman and Goodman, 2014).

THE POWER OF AMORTISATION

Neural networks are ideally suited for situations in which a complex task needs
to be done repeatedly, and where the import of the problem justifies a big initial
outlay. In such settings, one expends a large cost to initially train the network
with the view of reaping dividends over time with its repeated use, a strategy
known as amortisation. The power of amortisation is perhaps most clearly exhib-
ited in large language models like OpenAI’s ChatGPT. Training the BigScience
Large Open-science Open-access Multilingual Language Model (BLOOM) required
over a million hours of computing on several hundreds of state-of-the-art graphics
processing units (GPUs), each costing many thousands of dollars, for nearly four
months (Luccioni et al., 2023). The total estimated consumed energy for train-
ing was 433 MWh, which is roughly equivalent to what 72 Australian households
would consume in an entire year. However, once trained, BLOOM could repeat-
edly produce polished text outputs (inferences) in response to inputs (data) on a
single GPU with a total consumed energy that would be far less than that needed
to boil water for a cup of tea.

Not all simulation-based inference methods are amortised, and may require re-
optimisation or re-sampling every time new data are observed. This makes them un-
suitable for situations where the same inferential task needs to be repeated many times
on different datasets, as is often the case in operational settings. For example, NASA’s
Orbiting-Carbon-Observatory-2 (OCO-2) satellite takes approximately 1,000,000 mea-
surements of light spectra per day. For each spectrum, an estimate of carbon dioxide
mole fraction is obtained by computing a Bayesian posterior mode via a forward physics
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Neural-network architec-
ture: The specific design of
a neural network, including
the operations executed in
each layer, how the layers are
connected, and the number of
layers.

Normalising flow: A se-
quence of invertible mappings
used to establish a flexible fam-
ily of distributions.

model (Cressie, 2018), requiring an exorbitant amount of computing power when done at
scale. Neural networks offer a way forward to make Bayesian inference from the spectra
quickly and accurately at a tiny fraction of the computational cost (David et al., 2021).

1.1 Paper outline

This review provides an introductory high-level roadmap to a suite of amortised neural
inferential methods. It organises and categorises these methodologies to help navigate
this relatively new and dynamic field of research. In Section 2 we discuss (Bayesian)
point estimation and methods that yield approximate posterior distributions. We also
discuss why amortisation is possible, by drawing on a result by Brown and Purves (1973).
In Section 3 we present ways in which neural networks can be used to construct summary
statistics from data, which often feature in amortised statistical inference methods. In
Section 4, we review neural methods for amortised likelihood-function and likelihood-
to-evidence-ratio approximation. In Section 5, we discuss available software for making
amortised parameter inference, and we demonstrate their use on a simple model where
asymptotically exact inference with MCMC is possible. In Section 6, we outline additional
topics that are related to the main topic of the review, and in Section 7 we conclude. The
review paper also contains Supplementary Material that includes background material on
neural network architectures and normalising flows often used in the context of amortised
inference; an additional illustration; and a brief discussion of related topics.

1.2 Notation convention

Throughout the review we consider data Z ∈ Z from a sample space Z ⊆ Rn, and
some model parameter vector of interest θ ∈ Θ, where Θ ⊆ Rd is the parameter space.
Unless specified otherwise, we assume that all measures admit densities with respect to
the Lebesgue measure, in which case we use p(·) to denote an arbitrary density function.
To simplify notation, we let the argument of p(·) indicate both the random variable the
density is associated with and its input argument. In particular, p(θ) denotes the prior
distribution of the parameters, p(Z) is the marginal likelihood (also known as the model
evidence), and p(θ | Z) = p(Z | θ)p(θ)/p(Z) is the posterior density function evaluated at
θ ∈ Θ and Z ∈ Z. We refer to p(Z | θ) as the likelihood function, irrespective of whether
it is expressing a density over Z for some fixed θ, or a function over θ for some fixed Z,
with its definition taken from the context in which it is used. We denote an approximate
function (e.g., approximate likelihood function or posterior density function) generically
as q(·); we let κ parameterise the approximation when q(·) refers to an approximate
posterior density, and use ω when q(·) refers to an approximate likelihood function. We
often make these parameters themselves a function of the data; for example, κγ(Z) returns
parameters characterising the posterior density from data, and is itself parameterised by
γ.

2 NEURAL POSTERIOR INFERENCE

The Bayesian framework provides a natural setting in which to consider amortised infer-
ence with neural networks. In this section, we review two prominent classes of amortised
Bayesian inferential approaches: neural Bayes estimation (Section 2.1) and methods for
neural posterior inference (Section 2.2) that approximate Bayesian posterior distribu-
tions via the minimisation of an expected Kullback–Leibler (KL) divergence (Kullback
and Leibler, 1951). The methods discussed here assume the existence of a mapping that
returns optimal inferences on θ for any given Z; in Section 2.3, we explain how the ex-
istence result of Brown and Purves (1973) relates to several of the amortisation schemes
we review.
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Point estimator: Any func-
tion of the data Z that returns
an estimate of an unknown
model parameter θ (i.e., any
d-dimensional statistic; Casella
and Berger, 2001, Chapter 7).

Loss function: A nonnegative
function that quantifies the in-
curred loss from an estimate not
equalling the true value.

Convolutional neural net-
work: A neural network archi-
tecture involving multiple con-
volutional operations, where the
convolution kernels are esti-
mated during training.

2.1 Neural Bayes Estimators

One often wishes to obtain point estimates of parameters from data. We call a mapping
θ̂ : Z → Θ a neural point estimator when the mapping is constructed using a neural
network. It is straightforward to construct such a mapping from simulations: Assume we
have N simulations of parameters and corresponding datasets from an underlying model,
{{θ(i),Z(i)} : i = 1, . . . , N}. One can perform point estimation by training (i.e., fitting)
a neural network that maps the input Z to the output θ, using the simulations and a
chosen loss function L(·, ·). Denote the neural point estimator as θ̂γ(·), where γ are the
neural network parameters. The neural network is trained by solving the optimisation
problem

γ∗ = argmin
γ

N∑
i=1

L(θ(i), θ̂γ(Z
(i))), (1)

where L(·, ·) is the chosen loss function, such as the absolute or squared-error loss. The

architecture of θ̂γ(·) is largely determined by the structure of the data (see Section S1
of the Supplementary Material), and optimisation is typically done using stochastic gra-
dient descent in conjunction with automatic differentiation, implemented using various
machine-learning libraries (see Section 5 for examples). Once trained, the neural network

θ̂γ∗(·) returns point estimates through simple feedforward evaluation, and is often orders
of magnitude faster than classical likelihood-based methods. This is the simplest form of
neural amortised inference.

Neural networks have been extensively used for parameter point estimation in recent
years. Gerber and Nychka (2021), Lenzi et al. (2023), and Sainsbury-Dale et al. (2024) use
a convolutional neural network (CNN) to estimate covariance parameters in spatial Gaus-
sian process models or models of spatial extremes, the latter of which are traditionally
considered computationally difficult to fit. Liu et al. (2020) also estimate the param-
eters of a Gaussian process, but adopt a transformer network to cater for realisations
of variable dimension and highly-parameterised covariance functions. Zammit-Mangion
and Wikle (2020) use a CNN with three-dimensional kernels to estimate the dynamical
parameters of an advection-diffusion equation, while Rudi et al. (2022) apply a CNN with
one-dimensional kernels for parameter estimation with ordinary differential equations. In
all cases, the neural networks are seen to provide good estimates at a small fraction of
the time required by likelihood-based estimators (a speedup of at least a hundred-fold is
typical). As shown in several of these works, a side-benefit of being able to estimate pa-
rameters very quickly is that uncertainty can be naturally quantified through parametric
or non-parametric bootstrap techniques with little extra computational effort.

To glean insight into the estimators’ properties, it is helpful to consider them within an
inferential decision-theoretic framework (Casella and Berger, 2001). Consider the Bayes

risk, that is, the expected loss over Z ∈ Z and θ ∈ Θ, of an estimator θ̂(·),

rB(θ̂(·)) ≡
∫
Θ

∫
Z
L(θ, θ̂(Z))p(Z | θ)p(θ)dZdθ. (2)

A minimiser of rB(θ̂(·)) is said to be a Bayes estimator. Assume now that the neural point

estimator θ̂γ(·) is flexible enough to approximate the true Bayes estimator arbitrarily well.
A simulation-based approach to constructing a neural point estimator proceeds as follows:
Replace the estimator in Equation 2 with the neural point estimator, approximate the
Bayes risk in Equation 2 with a Monte Carlo approximation, and then minimise the
empirical risk function with respect to the neural network parameters γ. This Monte-
Carlo-based empirical risk minimisation problem is precisely that given in Equation 1. For
this reason, we call a neural network trained as in Equation 1 a neural Bayes estimator; see
Sainsbury-Dale et al. (2024, Section 2) for more discussion and for an example comparing
the neural Bayes estimator to the analytic Bayes estimator for a simple model.
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Kullback–Leibler diver-
gence: A dissimilarity measure
between two distributions. For
two densities p(·) and q(·),
we denote the forward KL
divergence between p(·) and
q(·) as KL(p(X) ∥ q(X)) ≡∫
p(X) log p(X)

q(X)
dX. We denote

the reverse KL divergence as
KL(q(X) ∥ p(X)).

Amortisation gap: Error in-
troduced in amortised inference
because of incomplete training
(e.g., not enough simulations),
or because of neural network in-
flexibility, or both.

The connection between neural point estimators and Bayes estimators is important
for at least two reasons: First, it clearly shows that the way in which the parameters are
simulated for training the neural network matters, as it induces a prior distribution over
the parameters on which the resulting estimator depends. Second, Bayes estimators have
well-understood properties that can be drawn on to further understand those of the neural
estimators. Importantly, Bayes estimators are functionals of the posterior distribution:
Under the squared-error loss Lsel(θ, θ̂(Z)) ≡ ∥θ̂(Z) − θ∥2, the Bayes estimator is the

posterior mean E(θ | Z); under the loss Lvar(θj , θ̂j(Z)) ≡ ((θj −E(θj | Z))2 − θ̂j(Z))
2 for

some parameter θj , the Bayes estimator is the posterior variance V(θj | Z) (Fan and Yao,

1998); and under the quantile loss function Lρ(θj , θ̂j(Z)) ≡ (θ̂j(Z)−θj)(1{θ̂j(Z) > θ}−ρ)

the Bayes estimator θ̂j is the posterior ρ-quantile. Posterior quantiles can be used for fast
quantification of posterior uncertainty of θ via the construction of credible intervals. For
example, Sainsbury-Dale et al. (2023) obtain posterior medians and 95% credible intervals
of Gaussian-process-covariance-function parameters in over 2000 spatial regions from a
million observations of sea-surface temperature in just three minutes on a single GPU.
The required time is orders of magnitude less than that required by classical techniques
such as (non-amortised) MCMC or variational inference.

In all cases discussed in this section, the neural network, once trained, returns a point
estimate via a fast feedforward operation, and has the following graphical representation:

Z NN θ̂

Data Neural Bayes
Estimator

Point Estimate

Despite being a point estimator, the Bayes estimator can be viewed as the solution to
a KL optimisation problem. Specifically, consider the approximate posterior density
q(θ; θ̂(Z)) ∝ exp(−L(θ; θ̂(Z))). Then, from Equation 2, the Bayes estimator θ̂∗(·) is

θ̂∗(·) = argmin
θ̂(·)

−
∫
Z

∫
Θ

p(Z)p(θ | Z) log q(θ; θ̂(Z))dθdZ

= argmin
θ̂(·)

EZ[KL(p(θ | Z) ∥ q(θ; θ̂(Z)))], (3)

where here KL(p(θ | Z) ∥ q(θ; θ̂(Z))) is the forward KL divergence between p( · | Z)
and q( · ; θ̂(Z)). Neural Bayes estimators are therefore a special case of the more general
class of approximate Bayesian techniques discussed in Section 2.2. The outer expectation
in Equation 3 leads to the point estimator θ̂∗(·) being optimal, in a Bayes sense, for
any Z (see Section 2.3 for details). However, in practice, there will be some discrepancy

between a trained neural network θ̂γ∗(·) and the true Bayes estimator θ∗(·). Any extra
bias or variance introduced that makes the trained estimator sub-optimal with respect
to the target estimator (assumed to be globally optimal in a KL sense for any data Z) is
referred to as the amortisation gap (Cremer et al., 2018), and this is a consideration for
all the remaining approaches discussed in this review.

Finally, we note that, in addition to parameter inference, neural Bayes estimators are
also often used to generate useful summary statistics quickly for use with other down-
stream inferential algorithms, such as ABC; see Section 3 for examples and further dis-
cussion.
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Variational Bayes: A type of
approximate Bayesian inference
where the approximate distribu-
tion is that which minimises the
reverse KL divergence between
the true posterior distribution
and its approximation.

Inference network: A neu-
ral network whose output can
be used to construct an ap-
proximate posterior distribution
when supplied with observa-
tional data Z or summaries
thereof.

2.2 Approximate Bayesian inference via KL-divergence minimi-
sation

Finding an approximate distribution by minimising the KL divergence between p(θ | Z)
and an approximate posterior density forms the basis of many approximate inference
techniques. In this review, we focus on amortised versions of the two main classes of such
techniques: those that minimise the forward KL divergence, and those that minimise the
reverse KL divergence (i.e., variational Bayes). Both classes are approximate Bayesian
methods that are often used when other asymptotically exact methods such as MCMC are
computationally infeasible. The approximate density q(θ;κ) has distributional parame-
ters κ that need to be estimated. For example, when q(θ ;κ) is chosen to be Gaussian,
the parameters κ = (µ′, vech(L)′)′ contain a d-dimensional mean parameter µ, and the
d(d + 1)/2 non-zero parameters of the Cholesky factor L of a covariance matrix, where
vech(·) is the half-vectorisation operator.

Both forward and reverse KL minimisation approaches target the true posterior dis-
tribution, in the sense that in both cases the KL divergence is zero if and only if the
approximate distribution is identical to the true posterior distribution. However, when
the true posterior distribution is not in the class of approximating distributions, the opti-
mal approximate distribution depends on the direction of the KL divergence. As shown by
Murphy (2012, Chapter 21), minimising the reverse KL divergence leads to approximate
distributions that are under-dispersed and that tend to concentrate on a single mode of
the target distribution. On the other hand, minimising the forward KL divergence leads
to approximate distributions that are over-dispersed and that cover all modes of the tar-
get distribution. Although both approaches are ubiquitous, in simulation-based settings
forward KL approaches offer some advantages over their reverse KL counterparts; namely,
they are natively likelihood-free and they have a more straightforward implementation.

2.2.1 Forward KL-divergence minimisation

We first consider the non-amortised context, where the optimal approximate-distribution
parameters κ are found by minimising the forward KL divergence between the posterior
distribution and the approximate distribution:

κ∗ = argmin
κ

KL(p(θ | Z) ∥ q(θ;κ)). (4)

The optimisation problem in Equation 4 needs to be solved for every Z, and will be
computationally expensive if it needs to be done repeatedly. Amortisation can be imbued
in the learning problem by making the approximate-posterior-distribution parameters
themselves a function of the data. The amortised form of the approximate posterior
distribution is given by q(θ ;κ(Z)) for θ ∈ Θ,Z ∈ Z, where the function κ(·) maps the
data to the approximate-posterior-density parameters. We then find the function κ∗(·)
that minimises the expected forward KL divergence:

κ∗(·) = argmin
κ(·)

EZ[KL(p(θ | Z) ∥ q(θ;κ(Z))]. (5)

The function κ∗(·) has the property that it minimises the KL divergence between
p(θ | Z) and the approximate posterior density for every Z ∈ Z, and hence yields the
optimal approximate-posterior-density parameters for every Z ∈ Z (see Section 2.3 for
more details). In neural amortised inference, one models the mapping κ(·) from the
data to the distribution parameters using a neural network. This mapping, which we
write as κγ(·), can be constructed using the architectures discussed in Section S1 of the
Supplementary Material, with γ denoting neural network parameters. The function κγ(·)
is often referred to as an inference network, and γ is found by minimising a Monte Carlo
approximation to the expected KL divergence. Specifically, the optimisation problem
reduces to
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Invertible neural network:
A neural network whose ar-
chitecture constrains it to the
space of invertible mappings, of-
ten used to construct normalis-
ing flows.

Scoring rule: Real-valued
function s(·, ·) taking distribu-
tion F and observation y as in-
puts, and returning the (nega-
tively oriented) score when is-
suing a probabilistic forecast F
and when y materialises.

Proper scoring rule: Defin-
ing s̄(F,Q) =

∫
s(F, y)dQ(y) for

distributions F,Q, the scoring
rule s(·, ·) is proper if s̄(Q,Q) ≤
s̄(F,Q) for all F,Q, and strictly
proper if equality holds if and
only if F = Q.

γ∗ = argmin
γ

−
N∑
i=1

log q(θ(i);κγ(Z
(i))), (6)

where θ(i) ∼ p(θ) and Z(i) ∼ p(Z | θ(i)). This approach to neural posterior inference has
the following graphical representation:

Z NN κ

Data Inference
Network

Approx. Dist.
Parameters

Chan et al. (2018) let q(· ;κγ(Z)) be Gaussian with mean and precision both functions
of the data Z ∈ Z. Papamakarios and Murray (2016) go a step further and let q(· ;κγ(Z))
be a Gaussian mixture. Further flexibility can be achieved by modelling q(· ;κγ(Z)) using
a normalising flow. Here, the architecture used to construct q(· ;κγ(Z)) is often termed
a conditional invertible neural network, since the invertible map constructed using the
neural network has parameters determined by Z; see, for example, Ardizzone et al. (2019)
and Radev et al. (2022).

From Equation 6 note that we must be able to evaluate q(θ;κ(Z)) for any θ ∈ Θ and
Z ∈ Z when training the neural network. This is possible using normalising flows, which
are invertible by construction. However, invertibility can be a restrictive requirement,
and a more flexible approximate distribution could be obtained by foregoing the need
of density evaluation, and minimising a different objective function instead. To this
end, Pacchiardi and Dutta (2022a) implicitly define the approximate distribution as a
(generally non-invertible) conditional transformation of a random variable with a simple
known distribution. Specifically, let W be a latent variable with known distribution and
construct a (generally non-invertible) neural network gγ(Z,W) with parameters γ that
takes in both W and the data Z as input, and outputs θ. The variable W establishes an
implicit conditional distribution of θ for a given Z, which we denote as qγ(θ;Z). Then,
instead of minimising the forward KL divergence, minimise an expected score, that is,
solve

γ∗ = argmin
γ

N∑
i=1

s(qγ(· ;Z(i)),θ(i)), (7)

where θ(i) ∼ p(θ),Z(i) ∼ p(Z | θ(i)), and s(·, ·) is a proper scoring rule (Gneiting et al.,
2007), such as the energy score. The score is intractable (since qγ( · ;Z) cannot be eval-
uated), but for most scores of interest, one can estimate it for a given θ(i) and Z(i)

with a Monte Carlo approximation using samples from qγ(· ;Z(i)). These, in turn, are
straightforward to generate by sampling W from its known distribution and computing
gγ(Z

(i),W) for each realisation of W. The objective function in Equation 7 is a gen-
eralisation of that in Equation 6, and the two are identical if s(·, ·) is chosen to be the
logarithmic score. The approach of Pacchiardi and Dutta (2022a) can thus be seen as a
form of amortised approximate generalised Bayesian inference (Bissiri et al., 2016).

2.2.2 Reverse KL-divergence minimisation

Several methods to amortised inference minimise the expected reverse KL divergence
between the true posterior density and the approximate posterior density,

κ∗(·) = argmin
κ(·)

EZ[KL(q(θ;κ(Z)) ∥ p(θ | Z))].

7



Reparameterisation trick:
Implicitly defining a parameter-
dependent density function via
a generative model through
which gradients can be prop-
agated. For example, re-
expressing X ∼ Gau(µ, σ2) as
X = µ+ σϵ, ϵ ∼ Gau(0, 1).

In this case, the approximate posterior distribution is referred to as a variational posterior
distribution. As in Section 2.2.1, the parameters appearing in the variational posterior
distribution are functions of the data, and κ∗(·) has the property that it minimises the
KL divergence between the true posterior density p(θ | Z) and the approximate posterior
density for every Z ∈ Z, and hence yields optimal variational-posterior-distribution pa-
rameters for every Z ∈ Z (see Section 2.3 for more details). We now replace κ(·) with an
inference (neural) network κγ(·) (Mnih and Gregor, 2014). The neural network param-
eters γ can be optimised by minimising a Monte Carlo approximation of the expected
reverse KL divergence,

γ∗ ≈ argmin
γ

K∑
k=1

J∑
j=1

(
log q(θ(j);κγ(Z

(k)))− log(p(Z(k) | θ(j))p(θ(j)))
)
, (8)

where Z(k) ∼ p(Z), and θ(j) ∼ q(θ;κγ(Z
(k))). This objective now involves samples from

both the model and the variational distribution, and generally requires one to invoke the
so-called reparameterisation trick so that gradients with respect to parameters appearing
in the inference network can be easily evaluated (Kingma and Welling, 2013).

The concept of an inference network that returns parameters of a variational posterior
distribution dates to at least Dayan et al. (1995), where κγ(·) was called a recognition
model. It has since been used in various ways, for example for making inference on
hyperparameters in Gaussian process models (Rehn, 2022) or for making inference on
latent variables within deep Gaussian process models by Dai et al. (2015). Rezende and
Mohamed (2015) and Kingma et al. (2016) add flexibility to the variational posterior by
constructing q( · ;κγ(Z)),Z ∈ Z, using a normalising flow, so that the inference network
κγ(·) returns both the parameters of the flow’s starting distribution and those govern-
ing the flow (see Section S2 of the Supplementary Material). Variational auto-encoders
(Kingma and Welling, 2013), comprise an inference network in the encoding stage that
maps the data directly to parameters of the approximate posterior distribution (see Sec-
tion S4.1 of the Supplementary Material). An in-depth treatment of amortised variational
inference can be found in Zhang et al. (2018), Ganguly et al. (2023), and Margossian and
Blei (2023).

Despite their appeal, variational learning networks as discussed in this section are lim-
ited by the fact that Equation 8 involves the likelihood term p(Z | θ), whose evaluation
thus has to be computationally feasible for any θ ∈ Θ,Z ∈ Z. In some cases, this con-
ditional density is known and tractable; for example, Equation 8 can be used to develop
an amortised variational inference tool for solving inverse problems (Goh et al., 2019,
Svendsen et al., 2023), where the conditional distribution of Z is assumed to be Gaus-
sian with mean equal to the output of a forward physics model that takes θ as input.
Zhang et al. (2023) also adopt amortised variational inference for estimating parame-
ters in a hierarchical model for spatial extremes that has a tractable likelihood function.
When the likelihood function is intractable, however, reverse-KL-minimisation techniques
are often accompanied with neural-network approaches for likelihood approximation; see
Section 4.1 for further details. We outline two related reverse-KL minimisation tech-
niques that naturally avoid the need to explicitly define a likelihood term, the conditional
generative adversarial network and the variational auto-encoder, in Section S4.1 of the
Supplementary Material.

2.3 Existence of amortisers

The existence of a well-behaved globally optimal (i.e., amortised) estimator θ∗(·) or in-
ference network κ∗(·) is not obvious, but has been established in the work of Brown and
Purves (1973). Their existence result explains what is seen in experiments: there is often
no advantage in using a non-amortised inferential method tailored for a specific dataset
Z over an amortised one that applies to any Z ∈ Z (e.g., Radev et al., 2023a).
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Figure 1: Illustration of the result of Brown and Purves (1973) in the context of amortised

point estimation. (Left) A hypothetical nonnegative function g(Z, θ̂). To obtain the Bayes

estimate θ̂∗ for a given Z (shown as red dots for Z = 0 and Z = 1.5), g(Z, θ̂) needs to be
minimised along a slice at Z (dotted lines). (Centre) An absolutely measurable function

θ̂∗(·) (red) that minimises g(·, ·) for any Z ∈ Z, whose existence is proven by Brown

and Purves (1973), and alternative estimators (orange). If known, θ̂∗(·) can be used to

quickly find Bayes esimates for any Z ∈ Z. (Right) The optimal estimator θ̂∗(·) minimises

g(Z, θ̂(Z)) pointwise for each Z ∈ Z, and therefore minimises
∫
Z g(Z, θ̂(Z))dµ(Z) among

all candidate estimators under any strictly positive measure µ(·) on Z.

Consider first the case of point estimation. The Bayes estimate θ̂∗ minimises the
posterior expected loss given a specific Z, or, equivalently, the forward KL divergence
between the true posterior density and the density q(θ; θ̂) ∝ exp(−L(θ; θ̂)):

θ̂∗ = argmin
θ̂

∫
Θ

L(θ, θ̂)p(θ | Z)dθ = argmin
θ̂

KL(p(θ | Z) ∥ q(θ; θ̂)).

Define g(Z, θ̂) ≡ KL(p(θ | Z) ∥ q(θ; θ̂)), and suppose that for each Z ∈ Z there is at least

one θ̂∗ such that g(Z, θ̂∗) = inf θ̂ g(Z, θ̂). Brown and Purves (1973) show that, under mild

conditions, there exists an absolutely measurable function θ̂∗(·) such that

g(Z, θ̂∗(Z)) = inf
θ̂

g(Z, θ̂), for all Z ∈ Z. (9)

For illustration, consider the cost function g(Z, θ̂) ≡ log((3− Z)2 + 100(θ̂ − Z2)2 + 1)
for a model incorporating a single parameter θ and a single data point Z; Figure 1, left
panel, shows this hypothetical cost function. In a non-amortised setting, after observing
Z, the Bayes estimate θ̂∗ is found by minimising g(Z, θ̂) with Z fixed to the observed
data point. This potentially-burdensome optimisation problem must be repeated each
time a new data point is collected. On the other hand, in an amortised setting, one finds
a decision rule θ̂∗(·) that returns the Bayes estimate for any Z ∈ Z and, in this case,

the Bayes estimator is θ̂∗(Z) = Z2; see Figure 1, centre panel. Brown and Purves (1973)
show that such a function exists and is well-behaved under mild conditions. Further, since
g(Z, θ̂(Z)) is minimised pointwise by θ̂∗(·) for each Z ∈ Z (see Figure 1, right panel) and

g(·, ·) is nonnegative, the integral of g(Z, θ̂∗(Z)) over Z under any strictly positive measure
µ(·) on Z will be the smallest among any other possible candidate estimators; that is,

θ̂∗(·) = argminθ̂(·)
∫
Z g(Z, θ̂(Z))dµ(Z) for any strictly positive measure µ(·) on Z.

Returning to the multivariate setting and taking the integral to be the expecta-
tion with respect to the marginal likelihood yields the expected KL divergence in
Equation 3. This important result is well known in decision theory (e.g., Casella
and Berger, 2001), but it applies more generally to the other amortised frame-
works discussed in this paper. In particular, for the inference network in Sec-
tion 2.2.1 we have that g(Z,κ) ≡ KL(p(θ | Z) ∥ q(θ;κ)) while, for that in Section 2.2.2,
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Indirect inference: Fitting an
auxiliary model, that is simpler
than the target model, to data,
and making inference on target
parameters from the fitted aux-
iliary parameters.

g(Z,κ) ≡ KL(q(θ;κ) ∥ p(θ | Z)), for Z ∈ Z. In both cases g(·, ·) is nonnegative, and
therefore an amortised replacement κ∗(·) for κ∗ = argminκ g(Z,κ) exists, and can be
found by minimising the expected KL divergence over the distribution of the data. In-
terestingly, one need not necessarily minimise the expected KL divergence with respect
to p(Z) to fit the inference network; as shown above, this is a matter of convenience that
leads to tractable computations. Furthermore, from a practical standpoint, it is reason-
able to expend computing effort to fit the function in regions of the sample space which
are more likely to be visited; this leads to the amortisation gap being low in regions of
interest, albeit large in areas of low probability. We briefly review sequential methods
designed to mitigate this issue in Section S4.2 of the Supplementary Material.

3 NEURAL SUMMARY STATISTICS

Simulation-based inferential approaches typically require the pre-specification of summary
statistics. These could be provided, for example, via indirect inference (e.g., Drovandi
et al., 2011) or as point summaries of the posterior distribution (e.g., Fearnhead and
Prangle, 2012). The methods outlined in Section 2 also employ summary statistics, either
implicitly or explicitly. At one end of the spectrum, the first few layers in neural Bayes es-
timators or inference networks implicitly extract summaries that are then mapped to the
point estimates or approximate-posterior-distribution parameters, respectively. Other
methods, such as that by Radev et al. (2022) (Section 2.2.1) and the variational ver-
sion proposed by Wiqvist et al. (2021) (Section 2.2.2) employ summary networks that
are differentiated from the main inference network, which then take summary statistics
as input. At the other end of the spectrum, inference networks are trained using pre-
constructed summary statistics as input. For example, Blum and Francois (2010), Creel
(2017), and Gerber and Nychka (2021) ingest hand-crafted statistics into neural Bayes
estimators rather than raw data. In all cases, the summary statistics are an informative
low-dimensional representation of the data that allow for a parsimonious inference net-
work that is potentially easier to train. In this section we briefly review methods that
employ neural networks to automatically construct summary statistics for downstream
inference. In Section 3.1, we review methods that employ neural networks to explicitly
construct summary statistics for downstream inference; in Section 3.2, we discuss meth-
ods that integrate summary-statistic construction implicitly in an amortised inference
framework; and, in Section 3.3, we discuss how the number of summary statistics might
be chosen.

3.1 Explicit neural summary statistics

One of the most common neural summary statistics is the neural point estimator. Jiang
et al. (2017), for example, use a neural Bayes estimator under squared error loss to
generate posterior means quickly for use in ABC, while Dinev and Gutmann (2018)
use neural Bayes estimators in conjunction with the ratio-based likelihood-free inference
method of Thomas et al. (2022); similar approaches are also proposed by Creel (2017),
Åkesson et al. (2022) and Albert et al. (2022). One can move beyond point estimators as
summary statistics and train neural networks to return other summaries that are highly
informative of θ. A common approach is to target sufficiency of the summary statistics
S(Z) by maximising the mutual information between θ ∈ Θ and S(Z) ∈ S, with S
the sample space corresponding to S(Z) (see Barnes et al. (2011) and the discussion by
Barnes, Filippi and Stumpf in Fearnhead and Prangle (2012)). The mutual information,
MI(θ;S(Z)), is defined as the KL divergence between the joint p(θ,S(Z)) and the product
of marginals p(θ)p(S(Z)). Intuitively, when the mutual information is small, then θ and
S(Z) are nearly independent, which implies that the summary statistic S(Z) is irrelevant
for describing or predicting θ; the opposite behaviour holds when the mutual information
is large. Assume now that we use a neural network to construct summary statistics from
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Sufficient statistic: A
statistic S(Z) is suffi-
cient for θ if and only if
p(Z | θ) = h(Z)g(S(Z);θ) for
some nonnegative functions
h(·), g(·) (Fisher–Neyman
Factorisation Theorem).

Softplus function: The func-
tion sp(z) ≡ log(1 + exp(z))
commonly used as a smooth ap-
proximation to the rectified lin-
ear unit, ReLU(z) = max(0, z).
Asymptotically, sp(z) ≈ exp(z)
as z → −∞ and sp(z) ≈ z as
z → ∞.

data. For this so-called summary network Sτ (·) with network parameters τ , summary
statistics are found by solving

τ ∗ = argmax
τ

MI(θ;Sτ (Z)) = argmax
τ

KL(p(θ,Sτ (Z)) ∥ p(θ)p(Sτ (Z))). (10)

The objective in Equation 10 is not straightforward to approximate using Monte Carlo
techniques since it requires knowledge of the density function of the unknown sum-
mary statistics. To circumvent this issue, the mutual information neural estimator
(MINE; Belghazi et al., 2018) replaces the KL divergence with its Donsker–Varadhan
representation (Donsker and Varadhan, 1983). Writing (θ′,Sτ (Z)

′)′ ∼ p(θ,Sτ (Z)) and
(θ̃′, S̃τ (Z)

′)′ ∼ p(θ)p(Sτ (Z)), we have

MI(θ;S(Z)) = sup
T :Θ×S→R

E(θ′,Sτ (Z)′)′ [T (θ,Sτ (Z))]− log(E(θ̃′,S̃τ (Z)′)′ [exp(T (θ̃, S̃τ (Z)))]).

The appeal of the Donsker–Varadhan representation is that it does not require any knowl-
edge of the distribution of the summary statistics when approximated using Monte Carlo
methods. In MINE, the function T (·, ·) is modelled using a neural network Tζ(·, ·) that
is trained in tandem with Sτ (·) via

(τ ∗′
, ζ∗

′
)′ = argmax

(τ ′,ζ′)′

1

N

N∑
i=1

Tζ(θ
(i),Sτ (Z

(i)))− log

(
1

N

N∑
i=1

exp(Tζ(θ
(i),Sτ (Z

(π(i)))))

)
,

where θ(i) ∼ p(θ), Z(i) ∼ p(Z | θ(i)) and π(·) is a random permutation function used
to ensure that θ and S(Z) are (nearly) independent in the second term of the objective
function.

Hjelm et al. (2018) found that optimisation routines were more stable when replac-
ing the Donsker–Varadhan objective with one based on the Jensen–Shannon divergence,
which can be seen as a robust version of the former:

MI(θ;S(Z)) ≈ sup
T :Θ×S→R

E(θ′,Sτ (Z)′)′ [−sp(−T (θ,Sτ (Z)))]−E(θ̃′,S̃τ (Z)′)′ [sp(T (θ̃, S̃τ (Z)))],

where sp(z) ≡ log(1 + exp(z)) is the softplus function. The Jensen–Shannon divergence
was employed to extract summary statistics for use with both classical simulation-based
inference methods and neural based inference methods by Chen et al. (2021). Chen et al.
(2023) propose to further tame the optimisation problem by using a slice technique that
effectively breaks down the high-dimensional information objective into many smaller,
lower-dimensional ones.

Other neural-network-based approaches to find summary statistics include that by
Charnock et al. (2018) and de Castro and Dorigo (2019), who target statistics that max-
imise the determinant of the Fisher information matrix. Pacchiardi and Dutta (2022b)
take yet a different approach and fit a general exponential family model in canonical
form to simulated data. Their model comprises a summary statistics network Sτ (·) and
a network for the canonical parameters that together form a so-called neural likelihood
function. The two neural networks are fitted by minimising the Fisher divergence between
the true likelihood function and the neural likelihood function. Although the neural like-
lihood function is inferred up to a normalising constant, and can be used with certain
MCMC algorithms like the exchange algorithm, the main appeal of the method is that
the extracted neural summary statistics are the sufficient statistics of the best (in a Fisher
divergence sense) exponential family approximation to the true likelihood function.

3.2 Implicit neural summary statistics

The ability of neural networks to extract relevant summary statistics from the data is
analogous to their ability to learn features that are useful for predicting an outcome, for
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Representation learning:
The learning of features or
summaries from data that are
usrful for downstream inference
tasks.

example in image recognition; this property is often referred to as representation learning.
Feature extraction happens in the early layers of neural networks; similarly one can design
networks for amortised inference with the view that the first few layers extract useful (i.e.,
highly informative) summary statistics.

All methods discussed in Section 2 can incorporate this notion by splitting the under-
lying neural-network architecture into two distinct sub-architectures: a summary network
for extracting summary statistics from the data, and an inference network that now takes
those summary statistics as input (instead of the raw data), and outputs estimates or
distributional parameters. The summary network can be trained in tandem with this
now-simplified inference network in an end-to-end fashion. The trained summary net-
work then implicitly targets summary statistics that best enable the inference network
to match the true posterior distribution in a KL sense; see, for example, Sainsbury-Dale
et al. (2024) for this setup with neural Bayes estimators, Radev et al. (2022) for this setup
in an approximate Bayes forward KL divergence setting, and Wiqvist et al. (2021) in a
reverse KL divergence setting. The inference network combined with a summary network
has the following graphical representation (here, in an approximate Bayes setting):

Z NN S NN κ

Data Summary
Network

Summary
Statistics

Inference
Network

Approx. Dist.
Parameters

When a set of hand-crafted statistics are known to be informative of the parameter vector,
one may utilise both hand-crafted and implicitly learned (neural) summary statistics
simultaneously (see, e.g., Sainsbury-Dale et al., 2024, Sec. 2.2.1).

3.3 Number of summary statistics

With both explicit and implicit summary statistics, the dimensionality of S(·) (i.e., the
number of summary statistics) is a design choice. Pacchiardi and Dutta (2022b) let
the number of summary statistics equal the number of parameters while Chen et al.
(2021) use double the amount. Chen et al. (2023) propose letting S(·) be reasonably
high-dimensional, fitting the neural networks, and then ordering the summary statistics
according to their contribution to the mutual information; only the summary statistics
that substantially contribute to the mutual information need to be retained. They note
that setting this number to twice the dimension of θ appears to be sufficient in most
applications. In the context of neural Bayes estimators, Gerber and Nychka (2021) and
Sainsbury-Dale et al. (2024) set the number of (implicitly defined) summary statistics
to 128. This number is much larger than the number of parameters in the models they
considered, but the contribution of irrelevant summary statistics is automatically down-
weighted during training. Generally, however, one might expect including an excessive
number of summary statistics to be computationally wasteful and, in practice, some ex-
perimentation might be needed to determine a suitable number for a desired level of
accuracy.

4 NEURAL LIKELIHOOD AND LIKELIHOOD-TO-
EVIDENCE RATIO

Section 2 describes various popular methods for amortised neural posterior inference,
while Section 3 outlines the role of summary statistics and how they can be automatically
constructed from data. In this section we discuss methods for amortised approximation

12



Synthetic likelihood func-
tion: The distribution of sum-
mary statistics (typically as-
sumed to be Gaussian) with pa-
rameters that are a function of
the underlying model parame-
ters of interest. Often used as
a replacement for an intractable
likelihood function.

Binding function: Here used
to refer to a function mapping
the parameters of interest to the
parameters of the approximate
(synthetic) likelihood function.

of the likelihood function, p(Z | θ), and a closely related quantity that is proportional to
the likelihood function, the likelihood-to-evidence ratio, r(θ,Z) = p(Z | θ)/p(Z).

Amortised neural likelihood and likelihood-to-evidence-ratio approximators have sev-
eral common motivations. First, the likelihood function is the cornerstone of frequentist
inference, since it is needed for maximum likelihood estimation, while likelihood ratios of
the form p(Z | θ0)/p(Z | θ1) = r(θ0,Z)/r(θ1,Z) are central to hypothesis testing, model
comparison, and naturally appear in the transition probabilities of most standard MCMC
algorithms used for Bayesian inference. Second, amortised likelihood and likelihood-to-
evidence-ratio approximators enable the straightforward treatment of independent and
identically distributed (iid) replicates since, under independence of Z1, . . . ,Zm, one has
p(Z1, . . . ,Zm | θ) =

∏m
i=1 p(Zi | θ), and the multiple-replicate likelihood-to-evidence ra-

tio is of the form p(Z1, . . . ,Zm | θ)/p(Z1, . . . ,Zm) ∝
∏m

i=1 r(Zi,θ). Hence, an amortised
likelihood or likelihood-to-evidence-ratio approximator constructed with single-replicate
datasets can be used to make (frequentist or Bayesian) inference with an arbitrary num-
ber of iid replicates. Third, as these amortised approximators target prior-free quantities,
they are ideally placed for Bayesian inference that require the same model to be fitted
multiple times under different prior distributions. However, as we shall explain below,
these methods still require the user to define a proposal distribution p̃(θ) from which
parameters will be sampled during the training stage, and this distribution determines
the regions of the parameter space where the approximation will be most accurate.

We now review popular neural approaches for constructing amortised approximate
likelihood functions (Section 4.1) and likelihood-to-evidence ratios (Section 4.2). There
are also so-called doubly-approximate approaches to likelihood approximation, that in-
stead of targeting the true likelihood function, target an approximation to it, such as a
kernel density or Vecchia approximation; we review these in Section S4.3 of the Supple-
mentary Material.

4.1 Neural Likelihood

4.1.1 Neural synthetic likelihood

A popular method to approximate a likelihood function is the synthetic likelihood frame-
work of Wood (2010). In this framework, one replaces the likelihood function p(Z | θ)
with a synthetic one of the form q(S(Z);ω(θ)) based on summary statistics S(Z), where
ω(θ) is a binding function linking the parameter vector θ to the (approximate) density of
S(Z) (e.g., Moores et al., 2015). Note that here q(S(Z);ω(θ)) refers to a generic (approx-
imate) density for S(Z) evaluated at S(Z) itself. The summary statistics S(·) are often
modelled as Gaussian with mean parameter µ(θ) and covariance matrix Σ(θ). Observe
that if the binding function ω(θ) = {µ(θ),Σ(θ)} is known, the synthetic likelihood is a
form of amortised likelihood approximation, as it allows one to evaluate p( · | θ) quickly
for any θ. When a neural network is used to model the binding function, we obtain a
neural synthetic likelihood. In the Gaussian case, we let q(S(Z);ωη(θ)) be a Gaussian
function with mean parameter µη(θ) and covariance matrix Ση(θ), where the neural
binding function is ωη(θ) = {µη(θ),Ση(θ)}, and η are neural network parameters to
be estimated. Often, the Gaussianity assumption for S(Z) is deemed too restrictive, and
Radev et al. (2023a) instead model q(S(Z);ωη(θ)) using normalising flows (Section S2 of
the Supplementary Material).

The neural binding function can be trained via minimisation of the expected forward
KL divergence (similar to other approaches in Section 2.2.1). In other words, one solves

η∗ = argmin
η

Eθ[KL(p(S(Z) | θ) ∥ q(S(Z);ωη(θ))], (11)

which leads to the empirical risk minimisation problem

η∗ = argmin
η

−
N∑
i=1

log q(S(Z(i));ωη(θ
(i))), (12)

13



Gaussian mixture density
network: A Gaussian mixture
conditional probability distribu-
tion, where the means, vari-
ances, and mixing coefficients
are the outputs of neural net-
works that take the conditioning
variable as input.

where θ(i) ∼ p̃(θ), i = 1, . . . , N, are drawn from some proposal distribution (further dis-
cussed below), and Z(i) ∼ p(Z | θ(i)). The synthetic-likelihood network has the following
graphical representation:

θ NN ω

Parameters Inference
Network

Binding Function
Parameters

Once trained, the neural synthetic likelihood can be used instead of the true one in other
inferential techniques, for example in amortised variational inference (Equation 8), as
suggested by Wiqvist et al. (2021). The resulting framework is an amortisation of the
conventional variational-inference-with-synthetic-likelihood approach of Ong et al. (e.g.,
2018); we demonstrate its use in Section 5.

4.1.2 Neural full likelihood

While Equation 11 leads to an amortised likelihood approximation framework, replac-
ing the full likelihood with a synthetic likelihood may sometimes be undesirable (e.g.,
when one wishes to emulate the data Z for any given θ). One can instead target the
full likelihood function, which is obtained by setting S(·) to be the identity function.
Equations 11 and 12 then become

η∗ = argmin
η

Eθ[KL(p(Z | θ) ∥ q(Z;ωη(θ))] = argmin
η

E(θ′,Z′)′ [− log(q(Z;ωη(θ)))],

(13)

and

η∗ = argmin
η

−
N∑
i=1

log(q(Z(i);ωη(θ
(i)))), (14)

respectively. Such a framework was considered by Lueckmann et al. (2017) (using Gaus-
sian mixture density networks; see Bishop, 1995, Chapter 5) and Papamakarios et al.
(2019) (using masked autoregressive flows; see Section S2 of the Supplementary Mate-
rial).

4.1.3 Choice of proposal distribution

Unlike the methods in Section 2, we can use any arbitrary proposal distribution p̃(θ) that
is supported over the parameter space (or a subset thereof) to obtain samples for Equa-
tion 12 or 14. While the choice of proposal distribution p̃(θ) does not matter in theory
when solving Equation 11 or 13 for parameter values θ in its support, it is an important
consideration in practice when solving Equation 12 or 14 because p̃(θ) determines the
area of the parameter space where the parameters {θ(i)} will be most densely sampled,
and thus, where the likelihood approximation will be most accurate. In particular, if p̃(θ)
is not fully supported over the parameter space, the accuracy of the neural likelihood
approximation beyond the support of p̃(θ) will rely on the extrapolation ability of neural
networks, which is known to be poor. Therefore, the proposal distribution should be
sufficiently vague to cover the plausible values of θ, even though, if used in a Bayesian
context, it does not need to be the same as the prior distribution p(θ). Papamakarios
et al. (2019) develop a sequential training scheme aimed at improving simulation efficiency
(and thus likelihood approximation accuracy) for specific data Z; since our review focuses
on amortised inference, we defer discussion on sequential training methods to Section S4.2
of the Supplementary Material.
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Maximum mean discrep-
ancy: A distance measure
between two distributions.
For two densities p(·) and
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supg(·)∈G{EX(g(X)) −
EY(g(Y)}, for X ∼ p(·),
Y ∼ q(·) and a suitable class
of real-valued functions G
(Gretton et al., 2012).

4.1.4 Joint amortisation

Recently, Radev et al. (2023a) proposed to simultaneously approximate both the posterior
distribution and the likelihood function within a single unified training regime, using
two jointly trained normalising flows. The method, dubbed jointly amortised neural
approximation (JANA), involves extending Equations 5 and 13 to the joint optimisation
problem,

(γ∗′
, τ ∗′

,η∗′
)′ = argmax

(γ′ ,τ ′ ,η′ )′
E(θ′,Z′)′ [log(q(θ;κγ(Sτ (Z)))) + log(q(Z;ωη(θ)))]

− λ · (MMD[p(Sτ (Z)) ∥ Gau(0, I)])
2
, λ > 0, (15)

where the posterior network q(θ;κγ(Sτ (Z))) approximates the posterior density p(θ | Z)
through the summary network Sτ (Z), and where the likelihood network q(Z;ωη(θ)) (or
a synthetic likelihood version, based on Sτ (Z)) approximates the likelihood p(Z | θ);
the rightmost term on the right-hand side of Equation 15 involves the maximum mean
discrepancy (MMD) between the density of the summary statistics, p(Sτ (Z)), and the
standard multivariate Gaussian density, Gau(0, I); this serves as a penalty to impose
some probabilistic structure on the summary space and allows for the detection of model
misspecification (for further details, see Radev et al., 2023a). Since JANA approximates
both the (normalised) posterior density and the likelihood function, it also automatically
yields an amortised approximation to the marginal likelihood p(Z) = p(Z | θ)p(θ)/p(θ |
Z), which is key for Bayesian model comparison and selection. Moreover, it also allows one
to measure out-of-sample posterior predictive performance via the expected log-predictive
density.

4.2 Neural Likelihood-to-Evidence Ratio

4.2.1 General framework

Another popular approach to amortised inference is the approximation of likelihood ratios.
Some approaches (e.g., Cranmer et al., 2015, Baldi et al., 2016) target ratios of the form
p(Z | θ)/p(Z | θref) for some arbitrary but fixed “reference” parameter θref. In this review
we focus on other methods that obviate the need for a reference parameter by instead
targeting the likelihood-to-evidence ratio (Hermans et al., 2020),

r(θ,Z) = p(Z | θ)/p(Z). (16)

This ratio can be approximated by solving a relatively straightforward binary classi-
fication problem, as we now show. Consider a binary classifier c(θ,Z) that distinguishes
dependent parameter–data pairs (θ′,Z′)′ ∼ p(θ,Z | Y = 1) = p(θ,Z) from independent
parameter–data pairs (θ̃′, Z̃′)′ ∼ p(θ,Z | Y = 0) = p(θ)p(Z), where Y denotes the class
label and where the classes are balanced. Then, we define the optimal classifier c∗(·, ·) as
that which minimises the Bayes risk under binary cross-entropy loss, Lbce(·, ·),

c∗(·, ·) ≡ argmin
c(·,·)

∑
y∈{0,1}

Pr(Y = y)

∫
Θ

∫
Z
p(θ,Z | Y = y)Lbce(y, c(θ,Z))dZdθ

= argmax
c(·,·)

∑
y∈{0,1}

∫
Θ

∫
Z
p(θ,Z | Y = y){y log(c(θ,Z)) + (1− y) log(1− c(θ,Z))}dZdθ

= argmax
c(·,·)

∫
Θ

∫
Z
p(θ,Z) log c(θ,Z)dZdθ +

∫
Θ

∫
Z
p(θ)p(Z) log(1− c(θ,Z))dZdθ

= argmax
c(·,·)

[
E(θ′,Z′)′ log c(θ,Z) + E(θ̃′,Z̃′)′ log(1− c(θ̃, Z̃))

]
, (17)

where Pr(Y = y), y ∈ {0, 1}, denotes the class probability. It can be shown that c∗(θ,Z) =
p(θ,Z){p(θ,Z) + p(θ)p(Z)}−1 (Hermans et al., 2020, App. B), which can be recognised
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Balanced classification task:
A classification task is said to
be balanced if all the prior class
probabilities are equal.

Binary cross-entropy (log)
loss: The loss Lbce(y, c) =
−y log(c) − (1 − y) log(1 − c)
(i.e., negative Bernoulli log-
likelihood), a measure of the dif-
ference between the true class
y ∈ {0, 1} and an estimated
class probability c ∈ (0, 1).

as the optimal Bayes classifier under equal class probability (i.e., with Pr(Y = 0) =
Pr(Y = 1) = 1/2). Hence,

r(θ,Z) =
c∗(θ,Z)

1− c∗(θ,Z)
, θ ∈ Θ, Z ∈ Z. (18)

In the typical case that c∗(·, ·) is unavailable, it can be approximated by adopting a
flexible parametric representation for c(·, ·) and maximising a Monte Carlo approximation
of the objective function in Equation 17. Specifically, let cγ(·, ·) denote a binary classifier
parameterised by γ, typically a neural network with a sigmoid output activation function,
although other representations are possible (e.g., a logistic regression based on user-
specified or learned summary statistics; Dinev and Gutmann, 2018, Thomas et al., 2022).
Then, the Bayes classifier may be approximated by cγ∗(·, ·), where

γ∗ = argmax
γ

N∑
i=1

[
log{cγ(θ(i),Z(i))}+ log{1− cγ(θ

(i),Z(π(i)))}
]
, (19)

where θ(i) ∼ p(θ), Z(i) ∼ p(Z | θ(i)), and where π(·) is a random permutation of
{1, . . . , N}. Figure 2 demonstrates this learning task on the simple model Z | θ ∼
N(θ, θ2), θ ∼ U(0, 1), for cγ(·, ·) a fully-connected neural network with six layers (each of
width 64).

Once trained, the classifier cγ∗(·, ·) may be used to quickly approximate the likelihood-
to-evidence ratio via Equation 18, as summarised in the following graphical representa-
tion:

θ,Z NN c r

Parameters and
Data

Neural
Classifier

Class
Probability

Likelihood-to-Evidence
Ratio

Inference based on an amortised approximate likelihood-to-evidence ratio may proceed
as discussed in the introduction to Section 4, namely, in a frequentist setting via maxi-
mum likelihood estimation and likelihood ratios (e.g., Walchessen et al., 2023), and in a
Bayesian setting by facilitating the computation of transition probabilities in Hamiltonian
Monte Carlo and Markov chain Monte Carlo algorithms (e.g., Hermans et al., 2020, Begy
and Schikuta, 2021). Furthermore, an approximate posterior density can be obtained via
the identity p(θ | Z) = p(θ)r(θ,Z), and sampled from using standard sampling techniques
(e.g., Thomas et al. (2022); see also Section 5.2). Finally, if one also has an amortised
likelihood approximator (Section 4.1), then one may approximate the model evidence via
p(Z) = p(Z | θ)/r(θ,Z).

4.2.2 Variants of the target ratio

Several variants of the learning task described above have been investigated, with a variety
of different aims. One of these aims is to safeguard against over-optimistic inferences when
the true Bayes classifier c∗(·, ·) cannot be approximated well by the neural classifier cγ(·, ·);
in this situation it is widely accepted that one should err on the side of caution and make
cγ(·, ·) conservative (Hermans et al., 2022). Delaunoy et al. (2022) propose a way to do
this by encouraging cγ(·, ·) to satisfy the following ‘balance’ condition

E(θ′,Z′)′{cγ(θ,Z)}+ E(θ̃,Z̃)′{cγ(θ̃
′, Z̃′)′} = 1; (20)

it is straightforward to see that the Bayes classifier under equal class probability, c∗(·, ·),
satisfies the condition. Now, one can show that any classifier satisfying Equation 20 also
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Figure 2: Illustration of amortised likelihood-to-evidence ratio approximation using the
model Z | θ ∼ N(θ, θ2), θ ∼ U(0, 1). (Left) Samples of dependent pairs {θ, Z} ∼
p(θ, Z) (blue) and independent pairs {θ̃, Z̃} ∼ p(θ)p(Z) (red). (Centre) Class probabilities
from the exact Bayes classifier c∗(θ, Z) = p(θ, Z){p(θ, Z) + p(θ)p(Z)}−1, linked to the
likelihood-to-evidence ratio via the relation r(θ, Z) = c∗(θ, Z){1 − c∗(θ, Z)}−1. (Right)
Class probabilities from an amortised neural approximation cγ∗(·, ·) of the Bayes classifier.

satisfies E(θ′,Z′)′

[
c∗(θ,Z)
cγ(θ,Z)

]
≥ 1 and E(θ̃′,Z̃′)′

[
1−c∗(θ̃,Z̃)

1−cγ(θ̃,Z̃)

]
≥ 1, which informally means that

it tends to produce class-probability estimates that are smaller (i.e., less confident and
more conservative) than those produced by the (optimal) Bayes classifier. To encourage
the trained estimator to satisfy the balancing condition, and hence be conservative, one
may append to the objective function in Equation 17 the penalty term,

λ
[
E(θ′,Z′)′{c(θ,Z)}+ E(θ̃′,Z̃′)′{c(θ̃, Z̃)} − 1

]2
, λ > 0, (21)

which is equal to zero whenever the balancing condition is satisfied. Since the Bayes
classifier with equal class probablities is balanced, this penalty term only becomes rele-
vant when the Bayes classifier cannot be approximated well using the neural network, as
intended.

Another avenue of investigation is concerned with improving computational efficiency
when making inference with amortised ratio approximators. For instance, approximation
of likelihood ratios of the form r̃(θ0,θ1,Z) ≡ p(Z | θ0)/p(Z | θ1) = r(θ0,Z)/r(θ1,Z)
requires two forward passes through a neural classifier cγ∗(·, ·). Recently, however, Cobb
et al. (2023) proposed to construct an amortised approximation of r̃(·, ·, ·) using a single
neural network that takes as input two parameter vectors. This approach has the advan-
tage of requiring only a single forward pass through a neural classifier, which can improve
computational efficiency; however, this improvement can be offset if a larger (and there-
fore slower) neural network is required to learn the more complicated mapping. Finally,
several approaches have been developed to construct amortised ratio approximators for a
subset of θ. These marginal methods include introducing a binary mask as input to the
ratio approximator that encodes the desired subset of parameters (Rozet and Louppe,
2021), and constructing a separate ratio approximator for each subset of interest (Miller
et al., 2021, 2022).

5 SOFTWARE AND ILLUSTRATIVE EXAMPLE

Although amortised neural inference is a relatively new field, there are a number of easy-
to-use software packages available. We outline these in Section 5.1 and demonstrate their
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Censored data: Data whose
precise values are not known,
but which are known to lie in
some interval. Multivariate cen-
sored data often lead to in-
tractable likelihood functions.

Missing data: Data that have
not been observed, and that one
often needs to predict or im-
pute.

application through a simple illustrative example in Section 5.2 where the model param-
eters are easily inferred using MCMC. We choose this model in order to show the similar-
ity between the inferences obtained using the neural methods and those obtained using
MCMC. An additional illustration that considers a model for which MCMC cannot be
used is given in Section S3 of the Supplementary Material. Code for these two examples is
available at https://github.com/andrewzm/Amortised_Neural_Inference_Review/.

5.1 Software

Software availability for neural-network based inference has increased considerably in
recent years. The majority of this software is written in Python, and leverage the deep-
learning libraries TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019).
Software in the numerical programming language Julia and its deep-learning library
Flux (Innes, 2018) are also available. There are R interfaces to several of these libraries
written in other languages. We note that software evolves quickly; the description we
provide below is based on the software availability and functionality as of early 2024.

The package NeuralEstimators (Sainsbury-Dale et al., 2024) facilitates the construc-
tion of neural Bayes estimators (Section 2.1) using arbitrary loss functions, and likelihood-
to-evidence ratio approximators (Section 4.2). The package is written in Julia and lever-
ages the deep-learning library Flux, and is accompanied by a user-friendly R interface.
The package is specially designed to deal with independent replicates of the statistical
model, including independent replicates from spatial processes. The package also imple-
ments methods for bootstrap-based uncertainty quantification and for handling censored
(Richards et al., 2023) and missing (Wang et al., 2023) data.

The package sbi (Tejero-Cantero et al., 2020), short for simulation-based inference,
is a Python package built on PyTorch. It provides methods that target the posterior
distribution (Section 2.2.1), the likelihood function (Section 4.1), or the likelihood-to-
evidence ratio (Section 4.2), with posterior inference using the likelihood or likelihood-to-
evidence ratio facilitated with MCMC sampling, rejection sampling, or (non-amortised)
variational inference. The package implements both amortised and sequential methods,
the latter of which are aimed at improving simulation efficiency (see Section S4.2 of the
Supplementary Material).

The package LAMPE (Rozet et al., 2021), short for likelihood-free amortised pos-
terior estimation, is another PyTorch package that focuses on amortised methods for
approximating the posterior distribution (Section 2.2.1) or the likelihood-to-evidence ra-
tio (Section 4.2), with posterior inference using the likelihood-to-evidence ratio facilitated
with MCMC or nested sampling. The package allows for training data to be stored on disk
and dynamically loaded on demand, instead of being cached in memory; this technique
facilitates the use of very large datasets that do not fit in memory.

The package BayesFlow (Radev et al., 2023b) is built on TensorFlow and focuses on
amortised inference. It implements methods for approximating the posterior distribu-
tion (Section 2.2.1) and the likelihood function (Section 4.1), possibly in a joint manner
(Radev et al., 2023a); detecting model misspecification (Schmitt et al., 2024); and for
performing amortised model comparisons via posterior model probabilities or Bayes Fac-
tors. Recently, neural Bayes estimators (Section 2.1) have also been incorporated into
the package. The package is well documented and provides a user-friendly application
programming interface.

The package swyft (Miller et al., 2022) is built on PyTorch, and implements methods
for estimating likelihood-to-evidence ratios for subsets of the parameter vector, using
both amortised and sequential training algorithms. The package also allows for data to
be stored on disk and dynamically loaded, in order to facilitate the use of datasets that
are too large to fit in memory.

Finally, we note that the above software packages provide the tools necessary to easily
train the required neural networks from scratch, but that they are general-purpose. We
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Pre-trained neural network:
A neural network trained for
a generic task, that can be
used as a good initial condition
when training for specialised
tasks (e.g., in our context, for a
slightly different model or prior
distribution).

Affine coupling block: An in-
vertible transformation, where
the input is partitioned into two
blocks. One of the blocks un-
dergoes an affine transformation
that depends on the other block;
see Section S2 of the Supple-
mentary Material.

anticipate that, in the future, amortised inference tools may be bundled with packages
primarily designed around a specific modelling framework. For instance, a package that
implements a specific statistical model could include a pre-trained neural network, or
several such neural networks, designed to make fast inferences for that specific statistical
model. This could be a natural evolution since there are incentives for the developers of
such packages to make inference straightforward for increased accessibility and uptake.

5.2 Illustrative Example

In this section we showcase a few of the principal techniques discussed in this review.
We consider a model with only one unknown parameter, where the neural networks are
straightforward to train without the need for high-end GPUs, and for which MCMC
is straightforward to implement for comparison. We consider a spatial Gaussian pro-
cess with exponential covariance function with unit variance and unknown length scale
θ > 0. We assume that data Z are on a 16× 16 gridding, DG, of the unit square
D = [0, 1]2. The process model is therefore given by Z | θ ∼ Gau(0,Σ(θ)), where
Σ ≡ (exp(−∥si − sj∥/θ) : si, sj ∈ DG), and we let θ ∼ Unif(0, 0.6). We train the neu-
ral networks on 160,000 draws from p(θ) and p(Z | θ), and test the neural methods on
another 1,000 independent draws. We consider the more complicated case of an inverted
max-stable process, for which MCMC is impossible, in Section S3 of the Supplementary
Material.

The techniques we consider, their acronyms, and their software implementations are
outlined in Table S1 in the Supplementary Material. The gold standard is provided by a
(non-amortised) Metropolis–Hastings algorithm, MCMC, run on the 1,000 test datasets. We
implement a neural Bayes estimator, NBE (Section 2.1), using NeuralEstimators, targeting
the posterior mean, the posterior 5th percentile and the posterior 95th percentile. We im-
plement amortised posterior inference via forward KL minimisation, fKL (Section 2.2.1),
using BayesFlow with a normalising flow model for the posterior density constructed using
affine coupling blocks (see Section S2 of the Supplementary Material). In order to ensure
that the approximate posterior densities are zero outside the prior support of [0, 0.6], we
instead make inference on θ̃ ≡ Φ−1(θ/0.6) ∼ Gau(0, 1), and obtain samples from the
posterior distribution of θ through the inverse θ = 0.6 ·Φ(θ̃), where Φ(·) is the cumulative
distribution function of the standard normal distribution.

We implement three types of reverse-KL methods using TensorFlow, rKL1, rKL2, and
rKL3, that differ in the likelihood term used. All three target an approximate Gaus-
sian posterior distribution of θ̃ ≡ log(θ/(0.6 − θ)); samples from the approximate (non-
Gaussian) posterior distribution of θ are obtained by simply back-transforming samples
drawn from the approximate Gaussan distribution of θ̃. The first variant, rKL1, uses
the true likelihood (Section 2.2.2); the second one, rKL2, uses a synthetic likelihood con-
structed using an “expert” summary statistic, in this case given by the mean of the squared
differences between neighbouring pixels in Z (Section 4.1.1); and the third one, rKL3, uses
a synthetic likelihood constructed using a summary statistic found by maximising mutual
information (Section 3.1). Finally, we also consider the neural ratio estimation method,
NRE, implemented in the package sbi (Section 4.2); we use the amortised ratio to quickly
evaluate the posterior distribution on a fine gridding of the parameter space, from which
we then draw samples. For all approaches we use similar architectures, largely based on
a two-layer CNN; for more details see Table S1 in the Supplementary Material. All the
neural networks needed a similar amount of time to train (on the order of a few minutes)
using the CPU of a standard laptop.

We summarise results on the test set of size 1,000 in Figure 3 and Table S2 in the
Supplementary Material. In Figure 3a we plot the summary statistics for rKL2 and rKL3,
along with the inferred mean µτ (θ) and the 2στ (θ) interval used to construct the syn-
thetic likelihood. The expert summary statistic is non-linear, and, for large θ, a broad
range of parameters lead to a small expert summary statistic. The statistic constructed
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Figure 3: Results from the illustration of Section 5.2. Panel (a) plots the summary
statistics of the test data (red), together with the mean (solid black line) and 2σ bands
constructed from the fitted neural binding functions. The top sub-panel shows the expert
summary statistic (used in rKL2), while the bottom sub-panel shows the statistic con-
structed by maximising mutual information (used in rKL3). Panel (b) shows the results
from all methods on three test datasets. The top sub-panels show the data, while the bot-
tom sub-panels show estimates (solid vertical lines, MCMC posterior mean and NBE, which
largely overlap) and the inferred posterior distributions (solid lines, all methods except
NBE), as well as the true parameter value (dashed line). Panel (c) plots parameter point
estimates (in this case the posterior mean) against the true parameter value in the test
dataset for all methods. The colours of the lines in panel (b) correspond to the colours
used for the different methods in panel (c).
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Continuous ranked proba-
bility score: Given a fore-
cast distribution F and an
observation y, the continu-
ous ranked probability score is
CRPS(F, y) ≡

∫∞
−∞(F (x)−

1{y ≤ x})2dx.
Interval score: Given the
lower and upper quantiles, yl
and yu, of a forecast distribu-
tion, and an observation y, the
(1− α)× 100% interval score is
ISα(yl, yu; y) ≡ (yu − yl) +
2
α
(yl − y)1{y < yl} + 2

α
(y −

yu)1{y > yu}.

by maximising the mutual information on the other hand is largely linear over the entire
support of p(θ); as we will soon show, this leads to slightly better performance. Figure 3b
shows the results from applying the methods to three (test) spatial fields, Z1,Z2,Z3. All
methods perform well, with posterior variance increasing with θ as expected. Differences
between the approaches are mostly evident for larger θ where inferences are more un-
certain. Figure 3c plots the posterior means against the true values; all methods again
perform as expected, with lower variance for small θ and large variance for large θ, where
the length scale is large in comparison to the size of the spatial domain.

In Table S2 in the Supplementary Material we score the methods based on the
root-median-squared prediction error (RMSPE), the median-absolute prediction error
(MAPE), the median 90% interval score (MIS90), the 90% coverage (COV90), and the
median continuous ranked probability score (MCRPS); see Gneiting and Raftery (2007)
for more details on these scoring rules and Lueckmann et al. (2021) for other bench-
marks that could be used to assess simulation-based inference methods (note, we use
the median instead of the mean since the distribution of the scores is highly skewed;
see Figure S2 in the Supplementary Material), as well as an extensive comparison study
featuring some of the methods considered in this review. Again, there is very little dif-
ference between all approaches, but we see that those methods that do not place any
restrictions on the approximate posterior (NBE, fKL, NRE) yield close-to-nominal empiri-
cal coverages. The rKL methods we implemented have a restricted class of approximate
posterior distributions, and have lower coverage. This further highlights the importance
of flexible approximate posterior distributions when making reliable variational inference
(Rezende and Mohamed, 2015). We also note that replacing the likelihood in rKL1 with
a synthetic one (rKL2 and rKL3) leads to slightly higher RMSPE, with the network using
the mutual-information-constructed summary statistic (rKL3) faring better than the one
with an expert summary statistic (rKL2), yet with lower coverage.

Although all methods perform slightly worse than the gold-standard MCMC due to
either the amortisation gap (NBE, fKL, NRE) or the use of an inflexible approximation
to the posterior distribution (in this case the rKL variants), or both, the significance of
amortisation lies in the speed these usable inferences can be obtained, and the general
class of models these neural methods apply to. In this illustrative example, one run of
MCMC required around one minute of computing time to generate 24,000 samples (which
we thinned down to 1,000), while the neural methods only required a few dozens of
milliseconds to yield the approximate posterior inferences.

6 FURTHER READING

In Section S4 of the Supplementary Material we briefly discuss some important topics
related to the principal subject of this review: in Section S4.1 we discuss conditional
generative adversarial networks and variational auto-encoders in the context of amortised
inference; in Section S4.2 we discuss sequential methods and semi-amortisation for nar-
rowing the amortisation gap within regions of interest in the parameter/sample space;
in Section S4.3 we discuss so-called doubly approximate likelihood approaches; in Sec-
tion S4.4 we discuss simulation-based calibration of confidence intervals for neural infer-
ence methods; in Section S4.5 we discuss neural inference under model misspecification;
in Section S4.6 we discuss neural amortisation of complex data types; in Section S4.7 we
discuss neural model selection; and finally in Section S4.8 we give a non-exhaustive list
of applications that have benefitted to date from amortised inference.

7 EPILOGUE

Amortised neural inference methods are relatively new, and yet they have already shown
enormous potential for making highly accurate and extremely fast statistical inference
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in a wide range of applications with models that are either defined explicitly but are
computationally intractable (or take overly long to fit with classical likelihood-based ap-
proaches), or are defined implicitly through a stochastic generator. The amortised nature
of the neural methods presented in this review paper, made possible through the use of
neural networks that can be quickly evaluated, opens a new era in statistical inference,
an era where one can construct and share pre-trained inference tools that can be used
off-the-shelf with new data at a negligible computational cost.

A number of challenges remain for future research. From a theoretical viewpoint, there
is a need to gain further understanding on the asymptotic properties of neural estimators
(e.g., consistency and asymptotic distribution of estimators, their rates of convergence as a
function of the network architecture and the size of the training set) in order to facilitate
their design and establish rigorous implementation strategies. From a methodological
viewpoint, there are several avenues that remain to be explored. For example, for a
wide range of hierarchical models, one is also interested in recovering distributions of
random effects; this functionality could be achieved by combining amortised methods to
make inference on latent variables (e.g., Liu and Liu, 2019) with the parameter inference
methods discussed in this review. Additionally, basic rejection and importance sampling
ABC methods can also be amortised (e.g., Mestdagh et al., 2019), and it is not yet clear
what advantages these have, if any, over neural-network approaches. Finally, from an
application viewpoint, we believe there are several more traditional branches of statistics
that can benefit from these advances; these include analyses of survey data, crop yield, and
experimental design. Amortised neural inference approaches also enable online frequentist
or Bayesian inference where data arrive sequentially, and where parameters need to be
tracked. Overall, we anticipate that several fields in statistics will, in the near future, be
positively impacted by this relatively new enabling technology.
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Supplementary Material

The supplementary material is organised as follows. In Section S1 we discuss neural
network architectures most commonly used for amortised parameter inference. In Sec-
tion S2 we outline normalising flows and two popular ones: affine coupling flows and
masked autoregressive flows. In Section S3 we present a comparative study on a model
of spatial extremes. In Section S4 we discuss additional topics. Finally, in Section S5 we
provide additional figures and tables that complement the main text.

S1 NEURAL NETWORK ARCHITECURES

Neural networks are nonlinear functions that are used for function approximation, typ-
ically in high-dimensional settings. The functional form of a neural network is known
as its architecture. Throughout the review we generally treat the neural network as a
black-box function characterised by parameters that need to be optimised according to
some criterion. The purpose of this section is to give a brief insight into the black boxes
that are most pertinent to this field. Since neural networks are used in various ways when
making amortised inference, here we keep the notation general and denote the input to
the neural network as X and the output as Y, which we assume are real-valued and of
different dimension. The type of neural network used to capture a specific input/output
relationship largely depends on the multivariate structure of the input X.

Unstructured data: When the input X has no discernible multivariate structure (i.e.,
it is not spatially, temporally, or otherwise structured), a commonly-used architecture is
the multi-layer perceptron (MLP, e.g., Bishop, 1995, Chapter 5). For some L > 1 layers,
the MLP is a hierarchy of so-called fully-connected layers,

Y = φL(WLhL−1 + bL),

hl = φl(Wlhl−1 + bl), l = 2, . . . , L− 1,

h1 = φ1(W1X+ b1),

(S1)

where, for l = 1, . . . , L, γl ≡ (vec(Wl)
′,b′

l)
′ are the neural-network parameters at layer l

comprising both the matrix of weights Wl and vector of biases bl of appropriate dimen-
sion, and φl(·) are non-linear activation functions applied elementwise over their argu-
ments. Popular activation functions include the sigmoid function, the hyperbolic tangent
function, and the rectified linear unit, which returns its input multiplied by the Heav-
iside step function. The quantities hl, l = 1, . . . , L− 1, are often referred to as hidden
states. Training the network is the process of estimating the neural-network parameters
γ ≡ (γ′

1, . . . ,γ
′
L)

′ by minimising some empirical risk function, usually via stochastic gra-
dient descent. The MLP is highly parameterised, and is therefore most often used as a
small component of the more parsimonious architectures discussed below.

Gridded data: The mainstream neural network architecture used with gridded data is
the convolutional neural network (CNN, LeCun et al., 1998). Assume, for ease of exposi-
tion, that X ∈ Rn are ordered pixel values of a 1-D image, where n is the number of pixels.
Despite their name, CNNs typically implement cross-correlations and not convolutions:
an output of the first layer of a 1-D CNN is

h1,i = φ1

 nK∑
j=1

X̃i+j−1K1,j + b1,i

; i = 1, . . . , n,

where h1 ≡ (h1,i, . . . , h1,n)
′, K1 ≡ (K1,1, . . . ,K1,nK

)′ is an nK-dimensional discrete ker-

nel, and X̃ is an appropriately padded extension of X of size n+ nK − 1, where typically
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the padded values are equal to zero. Subsequent convolutional layers take the same form
and training then involves estimating γl ≡ (K′

l,b
′
l)
′ for l = 1, . . . , L. The kernels play

the role of weight sharing, and thus CNN layers are considerably more parsimonious than
fully-connected ones. In practice, inputs are often 2-D, and many “convolutions” are
done in each layer, so that a set of convolved quantities known as channels, are input to
the subsequent layer. When one has multiple 2-D image channels input to a layer, 3-D
convolutional filters are used to do the convolution. The final layer of a CNN is typically
a small MLP that maps the output of the convolutional layers to the output. See, for
example, Gerber and Nychka (2021), Lenzi et al. (2023), or Richards et al. (2023) for
examples of CNN-based neural Bayes estimator used to make amortised inference with
gridded spatial data.

Time series/spatio-temporal data: Time series data are also highly structured, and
the 1-D CNN described above is often used for time series data (e.g., Dinev and Gutmann,
2018, Åkesson et al., 2022, Rudi et al., 2022); extensions have been proposed for using
them for estimating parameters in a spatio-temporal setting (e.g., de Bézenac et al.,
2018, Zammit-Mangion and Wikle, 2020). However, CNNs do not take into account the
temporal ordering of the data, and do not explicitly account for temporal dynamics.
A classic architecture that takes temporal ordering into account is the recurrent neural
network (RNN, Williams and Zipser, 1989). A layer in a vanilla RNN is given by

hl = φl(Whl−1 + b+Uxl−1),

where l now denotes the position in a sequence (i.e., the time point), xl−1 is the data
(e.g., a covariate) at l − 1, and U is a matrix that maps the input to the hidden states.
Since the matrices W and U, and the bias b, are time invariant, the RNN is reasonably
parsimonious. A popular variant of the RNN is the long-short-term-memory (LSTM,
Hochreiter and Schmidhuber, 1997) model, which is designed to capture longer-range
dependencies. Despite successes in various machine learning applications, both RNNs
and LSTMs are being superceded by transformer-based architectures that incorporate
so-called self-attention modules intended to capture long-range dependencies and that
are amenable to more efficient training algorithms (Vaswani et al., 2017).

Graphical data and irregular spatial data: Graph neural networks (GNNs) are
designed for use with data that can be represented as a graph, where entities (nodes)
and their relationships (edges) encapsulate the data structure (e.g., Zhang et al., 2019,
Zhou et al., 2020, Wu et al., 2021). When performing “graph-level regression”, where the
entire graph (e.g., data) is associated with some fixed-dimensional vector (e.g., unknown
model parameters) that we wish to infer, a GNN typically consists of three modules:
a propagation module, a readout module, and a mapping module. The propagation
module consists of several layers of graph operations. For layer l, node j, a possible GNN
propagation layer is given by

hl,j = φl

Wl,1hl−1,j +
1

|N (j)|
∑

j′∈N (j)

aβl
(j, j′)Wl,2hl−1,j′ + bl

,

where hl,j is the hidden state of the jth node at layer l, N (j) denotes the set of neighbours
of node j, and aβl

(j, j′) is a weight that is a function of properties associated with nodes j
and j′ (e.g., the spatial distance between the nodes), parameterised by βl. The trainable
parameters at layer l are therefore given by γl ≡ (vec(Wl,1)

′, vec(Wl,2)
′,b′

l,β
′
l)

′. The
readout module maps the hidden state at the final layer of the propagation module to a
vector of fixed dimension by summarising each dimension separately (e.g., by averaging),
while the mapping module maps this fixed length vector to the output Y, typically
using an MLP. See Sainsbury-Dale et al. (2023) for an example of GNN-based neural
Bayes estimator used to make amortised inference with spatial data observed at irregular
locations.
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Exchangeable data: Inferences made from exchangeable data (e.g., data with inde-
pendent replicates) should be invariant to permutations of the data. This permutation-
invariance property is satisfied by design with the neural network architecture commonly
known as DeepSets (Zaheer et al., 2017). Consider an input consisting of m replicates,
X ≡ (X′

1, . . . ,X
′
m)′. The DeepSets architecture is:

Y = ϕ(a({ψ(Xi) : i = 1, . . . ,m})), (S1)

where ϕ(·) is typically an MLP, a(·) is a permutation-invariant set function which com-
bines its set elements through elementwise operations (e.g., elementwise addition or aver-
age), and ψ(·) is a neural network whose structure depends on that of each input datum
(e.g., ψ(·) could be a CNN if Xi is gridded spatial data). Note that ψ(·) is common
to all replicates in the dataset; any function of the form of Equation S1 is guaranteed
to be permutation invariant. See Chan et al. (2018) for a DeepSets-based approximate
posterior distribution for making inference with population-genetics data, and Sainsbury-
Dale et al. (2024) for a DeepSets-based neural Bayes estimator used to make amortised
inference with replicated spatial data.

S2 NORMALISING FLOWS

Approximate posterior distributions or likelihood functions in amortised inference are
often modelled using normalising flows, which map a target density to a simple, reference,
density. Consider an approximate posterior distribution for illustration. Let θ ∈ Θ ⊆ Rd

be the target variable of interest whose density we wish to model, and let θ̃ ∈ Θ̃ ⊆ Rd

denote a reference variable whose density is known; here we take this to be a spherical
Gaussian density. A normalising flow is a diffeomorphism g : Θ → Θ̃ parameterised
by some parameters κ such that g(θ;κ) = θ̃ ∼ Gau(0, I). By the change-of-variables
formula, the target log-density is

log q(θ;κ) = −d

2
log(2π)− 1

2
∥g(θ;κ)∥2 + log |det∇g(θ;κ)|. (S2)

Normalising flows shift the burden from modelling a density over a high-dimensional
space to that of modelling a flexible differentiable invertible mapping g(· ;κ). Recall
from Section 2 that amortisation can be imbued into the learning problem by making the
parameters κ themselves outputs of neural networks, which we denote as κγ(Z).

There are several types of normalising flows and excellent reviews include those by
Kobyzev et al. (2020) and Papamakarios et al. (2021). Here, we outline two popular ones
used in an amortised inferential setting:

Affine coupling flows: An affine coupling flow is a composition of several affine coupling
blocks constructed as follows. Consider the lth coupling block in a flow comprising L such
blocks, that takes in θ̃(l−1) as input, and that outputs θ̃(l), with θ̃(0) ≡ θ and θ̃(L) ≡
θ̃. Each affine coupling block partitions the input θ̃(l−1) into two disjoint components,

{θ̃(l−1)
1 , θ̃

(l−1)
2 }, and then outputs

θ̃
(l)
1 = θ̃

(l−1)
1 ,

θ̃
(l)
2 = θ̃

(l−1)
2 ⊙ exp(κ

(l)
γ,1(θ̃

(l−1)
1 ,Z)) + κ

(l)
γ,2(θ̃

(l−1)
1 ,Z),

where κγ(·) ≡ {κ(1)
γ (·), . . . ,κ(L)

γ (·)} with κ
(l)
γ ≡ {κ(l)

γ,1(·),κ
(l)
γ,2(·)}, l = 1, . . . , L, are

(generic, not necessarily invertible) neural networks that take in both the data and sub-
sets of the input/output variables. The mapping of each block is invertible, with inverse
given by,

θ̃
(l−1)
1 = θ̃

(l)
1 ,

θ̃
(l−1)
2 = (θ̃

(l)
2 − κ(l)

γ,2(θ̃
(l)
1 ,Z))⊙ exp(−κ(l)

γ,1(θ̃
(l)
1 ,Z)).
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The Jacobian of the transformation is triangular and therefore its determinant is straight-
forward to compute. Note that the variables need to be permuted between coupling blocks
in order for all input components to (eventually) be transformed. Affine coupling flows
find their roots in the work of Dinh et al. (2016), and one of its variants is implemented
in the popular package BayesFlow that does amortised inference by forward KL minimi-
sation (Section 2.2.1).

Masked autoregressive flows: An autoregressive flow is a composition of several layers
of the form,

θ̃
(l)
1 = h(θ̃

(l−1)
1 ;κ

(l)
γ,1(Z)),

θ̃
(l)
t = h(θ̃

(l−1)
t ;κ

(l)
γ,t(θ̃

(l−1)
1:(t−1),Z)), t = 2, . . . , d,

where κ(l)(·) ≡ {κ(l)
γ,1(·),κ

(l)
γ,2(·), . . . ,κ

(l)
γ,d(·)} are (generic, not necessarily invertible) neu-

ral networks that output the parameters of an invertible transformation h(·). The result-
ing Jacobian is triangular and hence the determinant required for the transformation is
easy to compute. There are several connections between the vanilla autoregressive flow
presented here and the affine coupling flows; these are discussed in detail by Papamakarios
et al. (2021).

A computationally attractive implementation of the autoregressive flow is the masked
autoregressive flow, where κ(l)(·) is a single neural network that outputs the required
parameters for all t = 1, . . . , d. This is achieved by ensuring there are no connections

between θ̃
(l−1)
t:d and the flow parameters corresponding to the tth transformation, through

appropriate use of masking 0-1 matrices. Masked autoregressive flows were developed by
Papamakarios et al. (2017), and have been extensively used for both amortised posterior
inference and amortised likelihood estimation (e.g., Greenberg et al., 2019, Papamakarios
et al., 2019, Brehmer et al., 2020, Wiqvist et al., 2021, Glöckler et al., 2022).

S3 COMPARATIVE STUDY WITH INVERTED
MAX-STABLE PROCESSES

Likelihood-based inference with popular models for spatial extremes is notoriously chal-
lenging (Huser and Wadsworth, 2022). Among such models, max-stable processes
(Padoan et al., 2010, Davison et al., 2012) have perhaps been the most widely used,
despite the fact that their likelihood function is computationally intractable in high
dimensions (Castruccio et al., 2016). Consider a spatial domain D ⊂ R2. On unit
Fréchet margins (i.e., with cumulative distribution function exp(−1/z), z > 0), such
models can be represented as Z(s) = supi≥1 ξiWi(s), s ∈ D, where {ξi}∞i=1 are points
from a Poisson point process with intensity ξ−2dξ on (0,∞) and Wi(·) are independent
copies of a nonnegative process W (·) with unit mean (also independent of ξi). From this
representation, one can show that the joint distribution at sites {s1, . . . , sn} ⊂ D has
the form Pr(Z(s1) ≤ z1, . . . , Z(sn) ≤ zn) = exp(−V (z1, . . . , zn)) with V (z1, . . . , zn) =
E(maxj=1,...,n{W (sj)/zj}) the so-called exponent function. Various choices for the pro-
cess W (·) lead to different types of max-stable processes: Schlather (2002), for instance,
proposed setting W (s) =

√
2πmax{0, ε(s)}, s ∈ D, for a standard Gaussian process ε(·)

with some chosen correlation function, which leads to an analytical form for the exponent
function, but there are several other possibilities; see Davison et al. (2012), Davison and
Huser (2015) and Davison et al. (2019) for exhaustive reviews.

While max-stable processes are often used in applications, recently Huser et al. (2024)
argued against the systematic use of max-stable processes in environmental applications
due to the rigidity of their dependence structure (especially in the tail) and their in-
ability to capture weakening dependence and asymptotic independence. Huser et al.
(2024) instead argued in favour of other more flexible, computationally efficient, and
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pragmatic alternative modelling solutions. One possible solution to flexibly capture the
sub-asymptotic tail behavior of spatial processes displaying asymptotic independence is
to consider so-called inverted max-stable processes (Wadsworth and Tawn, 2012). These
models effectively swap the roles of the lower and upper tails in max-stable processes:
If Z(·) is a max-stable process with unit Fréchet margins, then Z̃(·) = 1/Z(·) is the
corresponding inverted max-stable process, yet now expressed on standard exponential
margins.

Unlike max-stable processes, inverted max-stable processes can flexibly capture
asymptotic independence in the upper tail, but they remain challenging to fit since
they are constructed from max-stable processes themselves, which admit an intractable
likelihood function; they are therefore ideal candidates to illustrate the merits of
likelihood-free neural approaches summarised in this review paper (as also advocated
by Huser et al. (2024)). From their definition, the joint bivariate survival function
of the bivariate vector (Z̃(sj), Z̃(sk))

′, sj , sk ∈ D, can be straightforwardly obtained

as Pr(Z̃(sj) > zj , Z̃(sk) > zk) = exp(−V (1/zj , 1/zk)), where V (·) denotes the bivariate
restriction of the exponent function of the underlying max-stable process Z(·) to the
pair of sites {sj , sk}. This formula can be used to derive the bivariate density function

p(Zj , Zk | θ) for any pair of variables (Z̃(sj), Z̃(sk))
′, j, k = 1, . . . , n, where θ denotes

the model parameters. Classical likelihood-based inference then proceeds by maximising
(with respect to θ) a pairwise log-likelihood constructed as

∑
j<k wjk log(p(Zj , Zk | θ)),

where wjk ≥ 0 are suitable weights chosen to improve both statistical and computational
efficiency. Often, one sets wjk = 1 if ∥sj − sk∥ < δmax for some cut-off distance δmax > 0,
and wjk = 0 otherwise, thus discarding distant pairs of sites. Here, in our simulation
study, we consider the Schlather inverted max-stable model parameterised in terms of the
length scale λ > 0 and smoothness parameter ν > 0 of its underlying Matérn correlation
function; that is, θ = (λ, ν)′. As for the prior distributions, we let λ ∼ Unif(0, 0.6) and
ν ∼ Unif(0.5, 3). We simulate datasets on a 16 × 16 spatial gridding of [0, 1]2 (i.e., at
256 locations) with a single replicate in each dataset. To make inference on θ, we then
consider maximum composite likelihood, MCL, with δmax = 0.2 (i.e., keeping only about
10% of pairs in the pairwise likelihood for major improvements in speed and accuracy),
as well as the fKL minimisation approach with a normalising flow implementation of the
approximate posterior distribution using BayesFlow.

Figure S1a shows the results when applying the methods to three (test) spatial fields,
Z1,Z2,Z3. The bivariate posterior distributions are relatively diffuse compared to the
single-parameter GP example of Section 5.2, but corroborate the true value in every
instance. The MCL estimator also yields reasonable estimates generally, although for the
second test case it estimates a value for ν that is on the boundary of the parameter space.
Figure S1b plots the posterior means and the MCL estimates for the two parameters. It
is well known that estimating these parameters from a single replicate is difficult, but we
can see a clear correlation between the posterior mean estimates and the true value; this
is less true for the MCL estimates, which often lie on the boundary of the parameter space.
The root-mean-squared error between the estimated and the true value by the amortised
estimator was about half that of the pairwise likelihood estimator, for both λ (0.119 vs.
0.212) and ν (0.506 vs. 0.842). In this case, these improved estimates (and accompanying
full posterior distributions) were also obtained with a 50-fold speedup.

S4 ADDITIONAL TOPICS

S4.1 Likelihood-free reverse-KL approaches

In this section we outline two additional methods related to reverse-KL minimisation that
are likelihood-free by design: conditional generative adversarial networks, and variational
auto-encoders.
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Figure S1: Results from the illustration of Section S3. Panel (a) shows the results from
the two methods on three test datasets. The top sub-panels show the data, while the
bottom sub-panels show samples from the inferred posterior distribution (red dots), the
posterior mean (black cross), the pairwise likelihood estimate (blue cross), as well as the
true parameter value (green dot). Panel (b) plots parameter point estimates against the
true parameter value in the test dataset for all methods.

Conditional generative adversatial networks: Generative adversarial networks
(GANs Goodfellow et al., 2014) are widely known for their ability to generate realis-
tic high-dimensional data, such as text, images, and video. They comprise two neural
networks, a generator, which generates outputs of interest from some latent noise input
that is arbitrarily distributed (e.g., normally distributed), and a discriminator whose role
is to discriminate outputs from the generator and data from the underlying data gener-
ating process. GANs are trained using a minimax loss function, where the discriminator
parameters are optimised to be able to correctly classify a datum as coming from the
data generating process or from the generator, and the generator network is optimised to
generate data that resemble samples from the true generating process as much as possible.

When used in the context of simulation-based inference, the generator in a GAN
generates samples from a posterior distribution through the use of data Z as a conditioning
input (Ramesh et al., 2022). Specifically, the inference network in the conditional GAN
is the generator gγ(Z,W), that takes in the conditioning data Z and latent quantities
W as input (that are independent from Z, arbitrarily distributed, and that can be easily
sampled), and returns parameters θ. For any fixed Z it can be shown that, once trained,
θ ∼ qγ(θ | Z), where qγ(· | Z) minimises the reverse KL divergence between the true
posterior distribution and the approximate posterior distribution (Ramesh et al., 2022,
Appendix A.2). Specifically, generator parameters γ are the solution to

γ∗ = argmin
γ

EZ[KL(qγ(θ | Z) ∥ p(θ | Z))].

Training of the GANs is sample-based and, although it yields a variational approximate
posterior distribution, it does not require knowledge of the likelihood.

Variational auto-encoders: The variational auto-encoder (VAE, Kingma and Welling,
2013) is a type of amortised variational inference where the likelihood is assumed to
have a simple form with distributional parameters expressed through a decoder (the in-
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ference network is analogously referred to as an encoder). Consider the case where the
assumed likelihood function q(Z;µη(θ),Ση(θ)) is a Gaussian function, with mean param-
eter µη(θ) and covariance matrix Ση(θ) outputs of a neural network that has parameters
η. Then, given a sample θ(j) from the variational distribution over θ, one produces a
variational posterior-predictive sample from q(Z;µη(θ

(j)),Ση(θ
(j))). In a VAE, the likeli-

hood network and the inference network are trained jointly, and the optimisation problem
of Equation 8 in the main text becomes

(γ∗′
,η∗′

)′ ≈ argmin
(γ′,η′)′

1

KJ

K∑
k=1

J∑
j=1

(
log q(θ(j);κγ(Z

(k)))

− log q(Z(k);µη(θ
(j)),Ση(θ

(j)))p(θ(j))
)
,

where Z(k) ∼ p(Z) and θ(j) ∼ q(θ;κγ(Z
(k))). Although the VAE has been used in an

amortised inference framework by Goh et al. (2019), it is most often used in situations
where one only has realisations of Z and no knowledge of the underlying data generating
process. In these cases θ plays the role of a latent variable encoding a lower dimensional
representation of the data (e.g., Doersch, 2016, Kingma et al., 2019, Cartwright et al.,
2023).

S4.2 Mitigating the amortisation gap with sequential methods
and semi-amortisation

The amortisation gap, which all methods discussed in this review may suffer from, can
be reduced by adopting a sequential strategy, where re-training of neural networks is
done in regions of interest. Sequential methods are not-amortised per se (since the region
of interest varies with the dataset) but can build and extend on the methods discussed
in this review. In sequential methods for posterior inference, parameters are sampled
from a proposal distribution that generally differs from the prior distribution, and re-
quire importance-weight adjustment to the loss function (e.g., Lueckmann et al., 2017) or
to the approximate posterior distribution post-training (e.g., Papamakarios and Murray,
2016); see also Greenberg et al. (2019) and Goncalves et al. (2020). Sequential methods
are also used to refine the neural likelihood function in region of high parameter interest
(Papamakarios et al., 2019) and can also be used to specifically lower the amortisation gap
globally. For example, using a Bayesian neural network for the likelihood network, Lueck-
mann et al. (2019) propose a training strategy that sequentially minimises the uncertainty
on the likelihood approximation. Another approach to deal with the amortisation gap
when making posterior inference is semi-amortisation. Here, a global amortised infer-
ence network is used as an initialisation for standard (non-amortised) inference. This
is attractive in the reverse-KL scenario, where (non-amortised) variational inference is
straightforward; see, for example, Hjelm et al. (2016) and Kim et al. (2018).

S4.3 Neural “doubly-approximate” likelihood approaches

Some amortised neural likelihood methods proposed in the recent literature are doubly-
approximate in that two levels of approximation are involved: (i) neural networks are
used to approximate a certain target and (ii) this target is itself an approximate likelihood
(rather than the true likelihood). Here we outline two such methods.

Kernel density target: Fengler et al. (2021) propose using so-called likelihood approxi-
mation networks (LANs), which are divided into two distinct methods: the “pointwise ap-
proach” and the “histogram approach”. The pointwise approach learns the log-likelihood
function log p(Z | θ) by representing it through a neural network taking a parameter vec-
tor and a data point as (multi-dimensional) input and returning the log-likelihood value
as (uni-dimensional) output. To train the network, empirical likelihood values are first
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obtained for each specific parameter value θ using a kernel density estimator of the form
p̂h(Z | θ) = 1

N

∑N
i=1 fh(∥Z− Z(i)∥) for some kernel function fh(·) with bandwidth h > 0

(e.g., a centred Gaussian density with standard deviation h), where Z(i) ∼ p(Z | θ); these
empirical values serve as surrogates for the (unknown) true likelihood values. Then, the
neural approximate likelihood can be trained by minimising an appropriate loss function
contrasting neural log-likelihood and empirical log-likelihood values p̂h(Z | θ). Under the
squared (respectively absolute) error loss, the pointwise LAN approach boils down to per-
forming a deep non-linear mean (respectively median) regression with empirical likelihood
values playing the role of response variables and the combination of parameters and data
points playing the role of covariates. Fengler et al. (2021) instead consider the Huber loss
(Huber, 1964) due to its robustness, but many other options are also possible. When the
dataset contains multiple independent replicates, the overall approximate log-likelihood
function is then obtained by evaluating, one by one, all single-observation log-likelihoods
using the trained network and then summing them up. This pointwise approach admits
the following graphical representation:

θ,Z NN log p̂h(Z | θ)

Parameters
and Data

Inference
Network Log-Likelihood

The histogram approach, in contrast, seeks to provide a method that can directly evaluate
the overall (log-)likelihood function for an arbitrary number of data points via a single
forward pass through the network. This is achieved by modifying the response variable to
be binned empirical likelihood values (using the same kernel density estimator technique),
and regressing it against parameter values alone using an appropriate neural network
architecture and loss function (e.g., the KL divergence between binned densities).

While both of these approaches were shown by Fengler et al. (2021) to provide good
results in a relatively low-dimensional cognitive neuroscience data example (using a multi-
layer perceptron for the neural network in the pointwise approach, and a different net-
work with convolutional layers in the histogram approach), LANs have several drawbacks
(Boelts et al., 2022). First, the response variables in the described deep regression prob-
lem are not true likelihood values, but based on empirical kernel-density likelihood values,
which are approximate and have their own limitations, especially in their ability to cap-
ture the tails. Second, since the accuracy of the method depends on the accuracy of
the kernel-density-estimated empirical likelihoods, a large number of training samples are
typically required to ensure that the empirical kernel-density likelihood values accurately
approximate their true likelihood counterparts. For example, Fengler et al. (2021) used
1.5 million parameter values and 100, 000 data points per parameter, i.e., more than 100
billion training data points in total. This requirement is likely to make the training phase
computationally prohibitive in many applications.

Vecchia likelihood target: Another recently-introduced doubly-approximate approach
consists in exploiting the Vecchia likelihood approximation (Vecchia, 1988, Stein et al.,
2004, Katzfuss and Guinness, 2021), which represents the likelihood function as a product
of univariate conditional densities, yet with a reduced number of conditioning variables
(hence the approximation); then, amortised neural conditional density estimators can be
trained for each density of the form p(Zj | ZNei(j)), where Zj denotes the jth element of the
vector Z and ZNei(j) contains some neighboring variables within its “history” according a
predefined sequence; after training, these approximate conditional densities are put back
together to get an amortised likelihood approximation of p(Z | θ) (Majumder and Reich,
2023, Majumder et al., 2023).
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S4.4 Reliable inference with simulation-based calibration

Due to the amortisation gap, credible and confidence intervals/regions obtained from
the neural inference approaches described in this review paper can be over-confident
with poor frequentist properties, thus biasing inferences and subsequent decision-making
(Hermans et al., 2022). Various methods have been proposed to mitigate this issue. One
possible approach called WALDO (Masserano et al., 2023), which builds on the work of
Dalmasso et al. (2021), aims at constructing confidence regions with finite-sample con-
ditional validity through Neyman inversion, mimicking the well-known Wald test. This
method considers a Wald-like test statistic of the form W(Z;θ0) = (E(θ | Z)− θ0)′V(θ |
Z)−1(E(θ | Z)− θ0), where E(θ | Z) and V(θ | Z) are, respectively, the conditional mean
and the conditional covariance matrix of the model parameter θ given data Z, which can
be estimated from the neural amortised method under consideration, either analytically
or by sampling. The critical values of this test statistic can be learned through a sepa-
rate deep quantile regression model. Confidence regions resulting from WALDO will, by
construction, satisfy conditional coverage regardless of the sample size and the true value
of θ, provided the quantile regression fits well. WALDO is applicable to both frequentist
and Bayesian neural methods, and when used in a Bayesian context it still yields valid
confidence regions at the desired level irrespective of the prior distribution. Other em-
pirical simulation-based approaches for validating an amortised estimator include Talts
et al. (2018), Zhao et al. (2021), and Hermans et al. (2022).

S4.5 Inference under model misspecification

Model misspecification (i.e., distribution shift) is a problem that is ubiquitous in sta-
tistical modelling and inference. With likelihood-based inference, the effect of model
misspecification is well understood from classical asymptotic theory (see, e.g., Davison,
2003, page 147–148); the same is not true with neural inference approaches. This open re-
search question is especially relevant as neural networks are known to extrapolate poorly
in general. While there are simple numerical experiments that suggest that these methods
have some built-in robustness against misspecification (e.g., supplementary material of
Sainsbury-Dale et al. (2024)), others suggest otherwise (e.g., Bon et al., 2023). Efforts to
tackle model misspecification include the use of distribution-mismatch-detection of the
learned summary statistics with respect to a reference distribution (Schmitt et al., 2024,
Radev et al., 2023). Kelly et al. (2023) instead modify summary statistics using auxil-
iary parameters to build a robust version of the sequential neural likelihood approach of
Papamakarios et al. (2019).

S4.6 Inference with complex data types

Certain neural inference approaches, for example those relying on normalising flows (e.g.,
Papamakarios et al., 2019), cannot be easily applied when the data are partially discrete
and partially continuous. To address this issue, Boelts et al. (2022) propose the so-called
mixed neural likelihood estimation (MNLE) method, which draws on Papamakarios et al.
(2019), but splits the inference problem into two simpler sub-problems: one that trains a
conditional density network (e.g., using normalising flows) to model continuous data given
model parameters and the discrete data (used as an input to the neural network), and
another one that only models discrete data given model parameters. These two networks
are then combined together to get the full model.

Similarly, neural inference with missing or censored data is not trivial because most
neural network architectures are not made to handle such inputs. Graph neural networks
(GNNs, see Section S1), designed to take different graphical structures as input, is a
possible architecture that can naturally deal with data missingness. Alternatively, Wang
et al. (2023) propose setting the missing data to an arbitrary constant, and augmenting
the input with an additional binary dataset of the same size indicating which data are
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missing. A neural network can then be trained on this modified and augmented input;
the rationale is that the network will learn to treat the missing data differently from the
non-missing observations. The drawback of this approach, however, is that the trained
neural network is sensitive to the data missingness model used during the training phase,
which can bias inference if misspecified. In the context of censored data, Richards et al.
(2023) use an approach similar to Wang et al. (2023) for making inference in a spatial
extremes application where non-extreme values are censored (but not missing). There
is, however, an important difference with respect to Wang et al. (2023), namely that the
censoring mechanism is fully determined by the data and the censoring threshold, and
thus never misspecified.

S4.7 Neural model selection

Amortised model comparison and selection can naturally proceed by training a neural
discriminator taking data (or summary statistics thereof) as input and returning a model
probability as output, thus mimicking the architecture of neural Bayes estimators (recall
Section 2.1) but with a modified final output layer. Such an approach is closely related
to hypothesis testing, and it has been used, for example, by Ahmed et al. (2022) to se-
lect among models with different tail structures. Alternatively, another possible model
selection approach is to proceed by computing Bayes factors (i.e., ratios of marginal
likelihoods), which can be directly obtained when the posterior density and the likeli-
hood function are both available as, e.g., in the JANA framework (Radev et al., 2023).
Traditional likelihood-ratio tests to compare nested models can also be performed using
(approximate) neural full likelihood and likelihood-ratio methods, even when they are
only available up to a normalising constant.

S4.8 Applications employing amortised neural inference

There has been a marked increase in the use of neural networks for making parameter
inference in recent years. The following list of applications is non-exhaustive, but serves
to show the wide scope of applications neural amortised inference can be useful for.

David et al. (2021) use a neural point estimator to map spectra collected by NASA’s
OCO-2 satellite to column-averaged carbon dioxide, using estimates available from classi-
cal inversion techniques as target output parameters during training. Amortisation in this
application is highly desirable because of the high throughput of remote sensing instru-
ments. Richards et al. (2023) apply neural Bayes estimators to fit hundreds of thousands
of models for spatial extremes (which have computationally-intractable likelihoods) to
censored particulate matter data in Saudi Arabia in a study on air pollution.

In the context of approximate Bayes, Speiser et al. (2017) use amortised variational
methods to infer neural activity from fluorescence traces; their inference network uses
a combination of recurrent neural networks and convolutional neural networks (see Sec-
tion S1), and as approximate posterior distribution they use a Bernoulli distribution for
the spike probabilities. Chan et al. (2018) use forward KL minimisation with a Gaus-
sian approximate posterior distribution of the intensity of recombination hotspots from
genome data. Siahkoohi et al. (2023) solve a geophysical inverse problem to infer the
state of Earth’s subsurface from surface measurements. They use forward KL minimisa-
tion with hierarchical normalising flows (Kruse et al., 2021) to approximate the posterior
distribution of the state. Similarly, von Krause et al. (2022) use forward KL minimisation
to fit diffusion models to response time data from over one million participants and study
how mental speed varies with age.

There have also been many applications of neural likelihood and likelihood-to-
evidence-ratio approximators. For instance, Lueckmann et al. (2019) construct neural
synthetic likelihoods to make inference on the evolution of membrane potential in (brain)
neurons through the Hodgkin–Huxley biophysical model. Fengler et al. (2021) apply the
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LAN method to make inference with stochastic differential equation models commonly
used in cognitive neurosciences. Using amortised neural likelihood ratio approximators,
Baldi et al. (2016) make inference with high-energy particle physics models; Delaunoy
et al. (2020) make inference on gravitational waves; and Cole et al. (2022) infer cosmo-
logical parameters based on measurements of the cosmic microwave background.
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S5 ADDITIONAL TABLES AND FIGURES

Table S1: Outline of software and architectures used in the illustration of Section 5.2

Acronym Method Implementation
MCMC Metropolis–Hastings. Base R; (R Core Team, 2023).
NBE Neural Bayes estimation. NeuralEstimators; Sainsbury-Dale et al.

(2024).
Summary network: 2-layer CNN followed
by two fully-connected layers.
Inference network: two fully-connected
layers to output posterior mean and
0.05/0.95 posterior quantiles.

fKL Forward KL minimisation
with normalising flow ap-
proximate posterior.

BayesFlow; (Radev et al., 2022).
Summary network: 2-layer CNN followed
by two fully-connected layers.
Inference network: Invertible neural net-
work with four coupling layers to sample
from the posterior distribution.

rKL1 Reverse KL minimisation
with logit-Gaussian ap-
proximate posterior.

TensorFlow; (Abadi et al., 2016).
Inference network: 2-layer CNN followed
by two fully-connected layers to output
variational mean and variance.

rKL2 Reverse KL minimisation
with logit-Gaussian ap-
proximate posterior and
with Gaussian synthetic
likelihood constructed us-
ing one “expert” summary
statistic.

TensorFlow; (Abadi et al., 2016).
Binding function network: 2 fully-
connected layers that output mean and
variance of summary statistic.
Inference network: 2-layer CNN followed
by two fully-connected layers to output
variational mean and variance.

rKL3 Reverse KL minimisation
with logit-Gaussian ap-
proximate posterior and
with Gaussian synthetic
likelihood constructed us-
ing one summary statistic
found by maximising mu-
tual information.

TensorFlow; (Abadi et al., 2016).
Summary network: 2-layer CNN followed
by two fully-connected layers to output
summary statistic from input data.
Binding function network: 2 fully-
connected layers that output mean and
variance of summary statistic.
Inference network: 2-layer CNN followed
by two fully-connected layers to output
variational mean and variance.

NRE Neural ratio estimation
with sampling from the
posterior distribution on a
fine gridding of the param-
eter space.

sbi; (Tejero-Cantero et al., 2020)
Summary network: 2-layer CNN followed
by two fully-connected layers.
Inference network: three fully-connected
layers to output likelihood-to-evidence ra-
tio.
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Table S2: Evaluation of the methods in Section 5.2 on test data using the root-median-
squared prediction error (RMSPE), the median-absolute prediction error (MAPE), the
median 90% interval score (MIS90), the 90% coverage (COV90), and the median
continuous-ranked probability score (MCRPS). All scores excluding COV90 (which should
be close to 0.9) are negatively oriented (lower is better).

Method RMSPE MAPE MIS90 COV90 MCRPS
MCMC 0.015 0.015 0.095 0.896 0.014
NBE 0.016 0.016 0.106 0.877
fKL 0.015 0.015 0.099 0.906 0.015
rKL1 0.016 0.016 0.098 0.777 0.014
rKL2 0.019 0.019 0.114 0.871 0.016
rKL3 0.018 0.018 0.091 0.816 0.014
NRE 0.017 0.017 0.110 0.913 0.016
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Figure S2: Empirical distribution of the absolute prediction errors (left), 90% interval
scores (centre), and squared prediction errors (right) for the different methods considered
in the illustration of Section 5.2.
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