Mastering a prickly problem in ferrofluids

KAUST researchers Dominik Michels and Libo Huang have performed computer simulations to accurately capture the behavior of ferrofluids. To see the full simulation video produced by the group visit
© 2019 KAUST

Ferrofluids, with their mesmeric display of shape-shifting spikes, are a favorite exhibit in science shows. These eye-catching examples of magnetic fields in action could become even more dramatic through computational work that captures their motion.

A KAUST research team has now developed a computer model of ferrofluid motion that could be used to design even grander ferrofluid displays. The work is a stepping stone to using simulation to inform the use of ferrofluids in broad range of practical applications, such as medicine, acoustics, radar-absorbing materials and nanoelectronics.

Ferrofluids were developed by NASA in the 1960s as a way to pump fuels in low gravity. They comprise nanoscale magnetic particles of iron-laden compounds suspended in a liquid. In the absence of a magnetic field, ferrofluids possess a perfectly smooth surface. But when a magnet is brought close to the ferrofluid, the particles rapidly align with the magnetic field, forming the characteristic spiky appearance. If a magnetic object is placed in the ferrofluid, the spikes will even climb the object before cascading back down.

Because ferrofluid behavior can be counter-intuitive, simulation is the ideal way to understand their complex motion. Until now, however, the models have had several limitations, says Libo Huang, a Ph.D. student in Dominik Michels's Computational Sciences Group within KAUST's Visual Computing Center.

Read the full article