Prof. Francesca Gardini, Università di Pavia
Tuesday, April 30, 2024, 16:00
- 17:00
Building 1, Level 3, Room 3119
We will discuss the solution of eigenvalue problems associated with partial differential equations (PDE)s that can be written in the generalised form Ax = λMx, where the matrices A and/or M may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilised formulations are used for the numerical approximation of PDEs. With the help of classical numerical examples we will show that the presence of one (or both) parameters can produce unexpected results.
Prof. Edgard Pimentel, Department of Mathematics of the University of Coimbra
Tuesday, March 26, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Hessian-dependent functionals play a pivotal role in a wide latitude of problems in mathematics. Arising in the context of differential geometry and probability theory, this class of problems find applications in the mechanics of deformable media (mostly in elasticity theory) and the modelling of slow viscous fluids. We study such functionals from three distinct perspectives.
Prof. Silvia Bertoluzza
Tuesday, March 05, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5209
We present a theoretical analysis of the Weak Adversarial Networks (WAN) method, recently proposed in [1, 2], as a method for approximating the solution of partial differential equations in high dimensions and tested in the framework of inverse problems. In a very general abstract framework.
Prof. Christof Schmidhuber, ZHAW School of Engineering
Tuesday, February 27, 2024, 16:00
- 17:00
Building 9, Level 2, Room 2322
Analogies between financial markets and critical phenomena have long been observed empirically. So far, no convincing theory has emerged that can explain these empirical observations. Here, we take a step towards such a theory by modeling financial markets as a lattice gas.
Prof. Dr. Victorita Dolean, Mathematics and Computer Science, Scientific Computing, TU Eindhoven
Tuesday, February 06, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Wave propagation and scattering problems are of huge importance in many applications in science and engineering - e.g., in seismic and medical imaging and more generally in acoustics and electromagnetics.
Prof. Zhiming Chen, Academy of mathematics and Systems Science, Chinese Academy of Sciences
Wednesday, January 24, 2024, 14:30
- 16:00
Building 4, Level 5, Room 5220
In this short course, we will introduce some elements in deriving the hp a posteriori error estimate for a high-order unfitted finite element method for elliptic interface problems. The key ingredient is an hp domain inverse estimate, which allows us to prove a sharp lower bound of the hp a posteriori error estimator.
Thursday, July 09, 2020, 15:00
- 16:00
KAUST
Contact Person
In this thesis, we present a pragmatic heterogeneous integration strategy to obtain high-performance 3D electronic systems using existing CMOS technology. Critical challenges addressed during the process are; reliable flexible interconnects, maximum area efficiency, soft-polymeric packaging, and heterogeneous integration compatible with current CMOS technology. First, a modular LEGO approach presents a novel method to obtain flexible electronics in a lock-and-key (plug and play) manner with reliable interconnects. It includes a process to convert standard rigid IC into flexible LEGO without any performance degradation with a high-yield. For the majority of healthcare and environmental monitoring applications, a sensory array is essential for continuous spatiotemporal activity recording. Here we present an ultra- high-density sensory solution (1 million sensors) as an epitome of density and address each of the associated challenges. A generic heterogeneous integration scheme is devised to obtain a physically flexible standalone electronic system using 3D-coin architecture. Lastly, a feather-light non-invasive ‘Marine-Skin’ platform to monitor deep-ocean monitoring is presented using the heterogeneous integration scheme. Electrical and mechanical characterization establish the reliability, integrity, robustness, and ruggedness of the processes, sensors, and multisensory flexible system.
Tuesday, November 12, 2019, 16:30
- 18:00
Building 9, Level 3, Room 3125
Contact Person
Physically compliant electronics are scientifically intriguing, mechanically complex, ‎technologically ‎challenging but with huge socio-economical potential. Until now the target applications ‎for ‎flexible electronics have been limited to displays, solar cells, printed batteries, wearables, and ‎implantable. However, with the emergence and growth of Internet of Things (IoT) devices ‎worldwide ‎from nearly 27 billion in 2017 to 125 billion in 2030, in this PhD research, expanding the ‎horizon of ‎applications for flexible electronics toward existing “things” will be explored. Low-cost sustainable materials as active electronic materials and a ‎Do-It-Yourself (DIY) integration strategy is used to build “Add-on” standalone sensory system which can be ‎attached to any ‎existing things like a decal. Such electronics can also be embedded in newly minted ‎devices specially ‎using additive methods.
Prof. Sayeef Salahuddin, Electrical Engineering and Computer Sciences, University of California Berkeley
Tuesday, November 12, 2019, 12:00
- 13:00
Building 9, Level 3, Room 3125
Power constraint has become a critical challenge for computing, restricting the rate at which data can be processed. The physics of ordered and correlated systems allow for fundamental improvement of the energy efficiency in this regard, going beyond what is possible with conventional materials in today’s computing hardware. One such example is the the ferroelectric materials, where thermodynamics dictate that charge can be switched with much lower energy compared to conventional dielectrics. This leads to a situation where a ferroelectric material can be stabilized at a state of negative capacitance. In this talk, I shall discuss our experimental work demonstrating the stabilization of negative capacitance, its integration into advanced transistors, and its potential impact on next generation computing hardware.
Prof. Mario Lanza, Nanoelectronics, Soochow University
Monday, November 11, 2019, 15:45
- 17:00
Building 2, Level 5, Room 5209
In this seminar, I will present the first wafer-scale statistical analysis of memristive crossbar arrays made of 2D layered materials. By using chemical vapor deposited multilayer hexagonal boron nitride (h-BN) sheets, we have fabricated metal/h-BN/metal memristive crossbar arrays that exhibit high yield ~98%, and low device-to-device variability. The devices showed record electrical performance, including stable operation at ultra-low currents down to 110 fA in low resistive state, ON/OFF current ratios up to 1011, record non-linearity of <0.09 mV/decade, and unprecedented low energy consumption down to 4.4 zJ/transition. Furthermore, the miniaturization of metal/h-BN/metal memristors has been demonstrated by using nanodot (Ø < 50 nm) electrodes. These findings may accelerate the use of 2D materials for building wafer-scale and high-density electronic memories and artificial neural networks.