Edmond Chow, Professor and Associate Chair, School of Computational Science and Engineering, Georgia Institute of Technology
Tuesday, June 06, 2023, 16:00
- 17:00
Building 2, Level 5, Room 5220
Coffee Time: 15:30 - 16:00. Kernel matrices can be found in computational physics, chemistry, statistics, and machine learning. Fast algorithms for matrix-vector multiplication for kernel matrices have been developed, and is a subject of continuing interest, including here at KAUST. One also often needs fast algorithms to solve systems of equations involving large kernel matrices. Fast direct methods can sometimes be used, for example, when the physical problem is 2-dimensional. In this talk, we address preconditioning for the iterative solution of kernel matrix systems. The spectrum of a kernel matrix significantly depends on the parameters of the kernel function used to define the kernel matrix, e.g., a length scale.
Monday, March 28, 2022, 13:00
- 15:00
Contact Person
This dissertation introduces flexible, lightweight, and robust Laser-Scribed Graphene (LSG) sensor solutions for detecting various physical parameters, such as strain, flow, deflection, force, pressure, temperature, conductivity, and magnetic field. Multifunctionality was obtained by exploiting the direct laser scribing process combined with the flexible nature of polyimide and the piezoresistivity of porous graphene. The outstanding properties of LSG, such as low cytotoxicity, biocompatibility, corrosion resistance, and ability to function under extreme pressure and temperature conditions, allowed targeting diverse emerging applications.
Tuesday, January 18, 2022, 18:15
- 20:00
Contact Person
Highly integrated and customizable systems have been a principal focus of development for parenteral and oral drug administration. Extensive work has been done to optimize drug efficacy via localized delivery and dosage control providing new ways for accomplishing targeted therapeutic effects. However, many challenges and opportunities for advancement remain. One promising research path is introducing novel microfabrication methods or engineering discoveries in concept realization, making devices more versatile and effective.
Monday, October 21, 2019, 14:30
- 15:30
B3 L5 Room 5220
Contact Person
Compact, autonomous computing systems with integrated transducers are imperative to deliver advances in healthcare, navigation, livestock monitoring, point of care diagnostics, remote sensing, internet-of-things applications, smart cities etc. Reflecting this need, there has been sustained growth in the market for transducers. Polymer based transducers, which meld highly desirable properties such as low cost, light weight, high manufacturability, biocompatibility and flexibility, are quite attractive. Doping polymers with magnetic materials results in the formation of magnetic composite polymers, enhancing the attractive traits of polymer transducers with magnetic properties. This dissertation is dedicated to the development of magnetic polymer transducers, which are suitable for energy harvesting and saline fluid transduction.
Thursday, April 25, 2019, 15:00
- 16:00
B3 L5 Room 5209
Contact Person
Magnetic sensors are deployed in many applications such as automotive, consumer electronics, navigation and data storage devices. Their market’s growth is driven by demands of higher performance and more integration; primarily to assist in the advancement of Internet of Things (IoT) and smart systems.
Monday, February 25, 2019, 07:00
- 23:00
King Abdullah University of Science and Technology (KAUST)
The “KAUST Research Conference on New Trends in Biosensors and Bioelectronics” aims to give an overview of the most recent efforts in bioelectronics that tackle the “interface” problem and overcome the limits of the current technologies by generating new materials/architectures/device components. With its truly interdisciplinary nature, this conference will bring scientists from different disciplines together.