Exact Sampling and Inference for Non-Linear Stochastic Differential Equations. Short course By Prof. Alexandros Beskos (Associate Professor at NUS, Singapore)

Event Start
Event End
Location
Building 1, Room 4214

Abstract

Exact Sampling and Inference for Non-Linear Stochastic Differential Equations.

I will present a surprisingly simple algorithm we developed some years ago for the exact simulation of non-linear diffusion processes. Exact sampling of such processes was considered impossible for such models. The presence of stochasticity allows for developing a rejection sampling algorithm by proposing candidate Brownian paths; the accept/reject rule then involves events of an appropriate Poisson process. We have thus termed the method the Weiner-Poisson factorization of a non-linear SDE. The developed sampling method provides also a natural approach for carrying out maximum-likelihood-based inference for unknown parameters of the SDE.

We show a number of extensions we obtained on the initial algorithm, corresponding to fewer restrictions on the drift function. I will discuss some open problems, limitations of the methods, and recent advances. Our work was published as a discussion paper at JRSSB in 2006, with several later extensions.

Brief Biography

2013-Today: Senior Lecturer in Statistics at UCL and Associate Professor at NUS.  

2008-2013: Lecturer in Statistics at  UCL.  

2005-2008: Post-Doc in Mathematics Institute and Department of Statistics, at University of Warwick.  

2002-2005: PhD under the supervision of Professor Gareth Roberts​

Refreshments:  Available @ 2:45pm on Thursday

Contact Person