Skip to main content
King Abdullah University of Science and Technology
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
  • Home
  • Study
    • Prospective Students
    • Current Students
    • Internship Opportunities
  • Research
    • Research Overview
    • Research Areas
    • Research Groups
  • Programs
    • Applied Mathematics and Computational Sciences
    • Computer Science
    • Electrical and Computer Engineering
    • Statistics
  • People
    • All People
    • Faculty
    • Affiliate Faculty
    • Instructional Faculty
    • Research Scientists
    • Research Staff
    • Postdoctoral Fellows
    • Students
    • Alumni
    • Administrative Staff
  • News
  • Events
  • About
    • Who We Are
    • Message from the Dean
    • Leadership Team
  • Apply

Design and analysis of surveys

Design and Analysis of Prevalence Surveys for Neglected Tropical Diseases

Prof. Peter Diggle, Statistics in the faculty of Health and Medicine, Lancaster University

Apr 27, 15:00 - 16:30

KAUST

Design and analysis of surveys

In low-resource settings, disease registries do not exist, and prevalence mapping relies on data collected form surveys of disease prevalence taken in a sample of the communities at risk within the region of interest, possibly supplemented by remotely sensed images that can act as proxies for environmental risk factors. A standard geostatistical model for data of this kind is a generalized linear mixed model, Yᵢ ~ Binomial(mᵢ; P(xᵢ)) log [P(x)/{(1- P(xᵢ)}] = d(x)β + S(x), where Yᵢ is the number of positives in a sample of mi individuals at location xᵢ, d(x) is a vector of spatially referenced explanatory variables available at any location x within the region of interest, and S(x) is a Gaussian process. In this talk, I will first review statistical methods and software associated with this standard model, then consider several methodological extensions and their applications to some Africa-wide control programmes for Neglected Tropical Diseases to demonstrate the very substantial gains in efficiency that can be obtained by comparison with currently used methods.

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE)

Connect with us

Footer

  • A-Z Directory
    • All Content
  • Site Management
    • Log in

© 2024 King Abdullah University of Science and Technology. All rights reserved. Privacy Notice