Prof. Steve Hranilovic, Associate Dean, McMaster University, Canada and Dr. Imran Shafique Ansari, Assistant Professor, University of Glasgow, United Kingdom
Tuesday, December 15, 2020, 16:00
- 17:15
https://kaust.zoom.us/j/4524555803
Contact Person
Due to the increasing scarcity of RF spectrum and growing interference due to multiple users, deploying next generation high-speed wireless networks is becoming increasingly difficult. The use of unlicensed optical bands for wireless communications has been heralded as an exciting development for future broadband access for indoor, underwater and space communication links.
Thursday, December 10, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/95474758108?pwd=WkwrdiszTE1uYTdmR3JRK09LVDErZz09
Contact Person
Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. In this talk, I will give an overview of my research which focuses on the development of geospatial methods and interactive visualization applications for health surveillance. I will present disease risk models where environmental, demographic and climatic data are used to predict the risk and identify targets for intervention of lymphatic filariasis in sub-Saharan Africa, and leptospirosis in a Brazilian urban slum. I will also show the R packages epiflows for risk assessment of travel-related spread of disease, and SpatialEpiApp for disease mapping and the detection of clusters. Finally, I will describe my future research and how it can inform better surveillance and improve population health globally.
Sunday, December 06, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/92588396271
Contact Person
A little more than half of the world’s population enjoy benefits of information technology which is enabled by complementary metal oxide semiconductor (CMOS) electronics. Going forward, we will enjoy further augmentation of quality of life through integrated CMOS electronic systems consisting of logic, memory, communication devices, energy storage and harvester, power management units, sensors and actuators. Their main attributes will include but not limited to high performance and storage capacity for data management; seamless connectivity; energy efficiency; hyper-scale integration density; appropriate functionalities based on their applications and operational environment; reliability and safety; and finally affordability and simplicity to expand their user base to include those who do not have any access to them today. Even using last fifty years’ wealth of knowledge and experience, such integrated electronic system development and deployment is a monumental engineering challenge. From that perspective, redesigning CMOS electronics might seem to be an overly ambitious goal specially, if that means transformation of such physically rigid complex electronic systems into a fully flexible one. To address this intriguing challenge, we have developed a unique coin like architecture based soft singular platform, which can be used as the building block of standalone fully flexible CMOS electronic system with all the aforementioned characteristics. We have devised an effective heterogeneous integration strategy based on mature and reliable CMOS technology only to integrate hybrid materials and diverse set of devices for multi-disciplinary applications. These will be the focus of this talk.
Professor Piermarco Cannarsa, Mathematical Analysis at the University of Rome Tor Vergata, Italy
Thursday, December 03, 2020, 15:00
- 18:00
https://kaust.zoom.us/j/99381635220
Contact Person
The theory of Mean Field Games (MFG) has been developed in the last two decades by economists, engineers, and mathematicians in order to study decision making in very large populations of “small" interacting agents. This short course will be focused on deterministic MFG, which are associated with a first order PDE system. We will address the problem assuming that agents are subject to state constraints, when classical PDE techniques are of little help. First, we will show how to prove the existence of solutions by the so-called Lagrangian approach, which interprets equilibria as certain measures on the space of paths that each agent can choose. Then, we will address regularity issues for such generalized solutions, deriving point-wise properties that allow to recover the typical MFG system. Finally, we will study the asymptotic behavior of solutions to the constrained MFG system as time goes to infinity, borrowing ideas from weak KAM theory.
Thursday, December 03, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/95474758108?pwd=WkwrdiszTE1uYTdmR3JRK09LVDErZz09
Contact Person
Biological systems are distinguished by their enormous complexity and variability. That is why mathematical modeling and computational simulation of those systems is very difficult, in particular thinking of detailed models which are based on first principles. The difficulties start with geometric modeling which needs to extract basic structures from highly complex and variable phenotypes, on the other hand also has to take the statistic variability into account. Moreover, the models of the processes running on these geometries are not yet well established, since these are equally complex and often couple many scales in space and time. Thus, simulating such systems always means to put the whole frame to test, from modelling to the numerical methods and software tools used for simulation. These need to be advanced in connection with validating simulation results by comparing them to experiments.
Prof. Josep M. Jornet, Northeastern University, in Boston, MA
Tuesday, December 01, 2020, 15:45
- 17:15
https://kaust.zoom.us/j/91515451801
Contact Person
The need for higher data-rates and more ubiquitous connectivity for an ever-increasing number of wirelessly connected devices motivates the exploration of uncharted spectral bands. In this context, Terahertz (THz)-band (0.1–10 THz) communication is envisioned as a key wireless technology of the next decade. The very large bandwidth available at THz frequencies (tens to hundreds of consecutive GHz) can alleviate the spectrum scarcity problem while enabling wireless Terabit-per-second (Tb/s) links in personal and local area networks, backhaul for urban and rural areas, and even space networks.
Professor Piermarco Cannarsa, Mathematical Analysis at the University of Rome Tor Vergata, Italy
Tuesday, December 01, 2020, 15:00
- 18:00
https://kaust.zoom.us/j/93837426659
Contact Person
The theory of Mean Field Games (MFG) has been developed in the last two decades by economists, engineers, and mathematicians in order to study decision making in very large populations of “small" interacting agents. This short course will be focused on deterministic MFG, which are associated with a first order PDE system. We will address the problem assuming that agents are subject to state constraints, when classical PDE techniques are of little help. First, we will show how to prove the existence of solutions by the so-called Lagrangian approach, which interprets equilibria as certain measures on the space of paths that each agent can choose. Then, we will address regularity issues for such generalized solutions, deriving point-wise properties that allow to recover the typical MFG system. Finally, we will study the asymptotic behavior of solutions to the constrained MFG system as time goes to infinity, borrowing ideas from weak KAM theory.
Carlos Cinelli, Ph.D. candidate, Department of Statistics, UCLA
Monday, November 30, 2020, 16:30
- 17:30
https://kaust.zoom.us/j/96131500026
Contact Person
The past few decades have witnessed rapid and unprecedented theoretical progress in the science of causal inference, ranging from the “credibility revolution” with the popularization of quasi-experimental designs, to the development of a complete solution to non-parametric identification with causal graphical models. Most of these theoretical progress, however, relies on strong, exact assumptions, such as the absence of unobserved common causes, or the absence of certain direct effects. Unfortunately, more often than not these assumptions are very hard to defend in practice. This leads to two undesirable consequences for applied quantitative work in the data-intensive sciences: (i) important research questions may be neglected, simply because they do not exactly match the requirements of current methods; or, (ii) researchers may succumb to making the required “identification assumptions” simply to justify the use of available methods, but not because these assumptions are truly believed (or understood).  In this talk, I will discuss new theories, methods, and software for permitting causal inferences under more flexible and realistic settings. These tools empower scientists, and policymakers to both examine the sensitivity of causal inferences to violations of its underlying assumptions, and also to draw robust and trustworthy conclusions from settings in which traditional methods fail.  
Monday, November 30, 2020, 14:30
- 16:00
https://kaust.zoom.us/s/94432699270
Contact Person
The overarching goal of Prof. Michels' Computational Sciences Group within KAUST's Visual Computing Center is enabling accurate and efficient simulations for applications in Scientific and Visual Computing. Towards this goal, the group develops new principled computational methods based on solid theoretical foundations. This talk covers a selection of previous and current work presenting a broad spectrum of research highlights ranging from simulating stiff phenomena such as the dynamics of fibers and textiles, over liquids containing magnetic particles, to the development of complex ecosystems and weather phenomena. Moreover, connection points to the growing field of machine learning are addressed and an outlook is provided with respect to selected technology transfer activities.
Monday, November 30, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/97173265210
Contact Person
In this talk, I will give an overview of research done in the Image and Video Understanding Lab (IVUL) at KAUST. At IVUL, we work on topics that are important to the computer vision (CV) and machine learning (ML) communities, with emphasis on three research themes: Theme 1 (Video Understanding), Theme 2 (Visual Computing for Automated Navigation), Theme 3 (Fundamentals/Foundations).
José A. Carrillo, Professor, Applied Mathematics at The Queen’s College, University of Oxford, UK
Sunday, November 29, 2020, 13:00
- 15:00
https://kaust.zoom.us/j/94314822443
Contact Person
The main goal of this mini course is to discuss the state-of-the-art in understanding the phenomena of long time asympotitcs and phase transitions for a range of nonlinear Fokker-Planck equations with linear and nonlinear diffusion. They appear as natural macroscopic PDE descriptions of the collective behavior of particles such as Cucker-Smale models for consensus, the Keller Segel model for chemotaxis, and the Kuramoto model for synchronization. We will discuss the existence of phase transitions in a variety of these models using the natural free energy of the system and their interpretation as natural gradient flow structure with respect to the Wasserstein distance in probability measures. We will discuss both theoretical aspects as well as numerical schemes and simulations keeping those properties at the discrete level.
Sunday, November 29, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/92588396271
Contact Person
The implementation of robotic solutions to accomplish automated tasks in industrial sectors has tremendously increased the human performance capacity and enhanced the cost, quality and delivery time for different tasks and products. Having already proven their utility at the macroscale, robots also show their usefulness when we approach the infinitely small dimensions, for applications such as inspection, cell manipulation, assembly, biopsy and drug delivery. The way to the microworld is not that simple; reducing the size of robots from macro scale to micro scale cannot be accomplished by merely miniaturizing the different parts of an existing robot. The variation in the scale of physical effects with the size scale and the difficulties of fabrication and assembly at the micro scale make the macro-solutions for actuation and sensing unsuitable for microdevices. Other actuation mechanisms with deformable structures and integrated sensing solutions are more efficient at microscale and compatible with microfabrication limitations. This talk focuses on different aspects related to mobile microrobots, including limitations and challenges, actuation mechanisms, power delivery, and current works in our team for the development of mobile microrobots.
José A. Carrillo, Professor, Applied Mathematics at The Queen’s College, University of Oxford, UK
Thursday, November 26, 2020, 13:00
- 15:00
https://kaust.zoom.us/j/91650470766
Contact Person
The main goal of this mini course is to discuss the state-of-the-art in understanding the phenomena of long time asympotitcs and phase transitions for a range of nonlinear Fokker-Planck equations with linear and nonlinear diffusion. They appear as natural macroscopic PDE descriptions of the collective behavior of particles such as Cucker-Smale models for consensus, the Keller Segel model for chemotaxis, and the Kuramoto model for synchronization. We will discuss the existence of phase transitions in a variety of these models using the natural free energy of the system and their interpretation as natural gradient flow structure with respect to the Wasserstein distance in probability measures. We will discuss both theoretical aspects as well as numerical schemes and simulations keeping those properties at the discrete level.
Thursday, November 26, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/99492305300
Contact Person
Modular robotics deals with robots that are an assemblage of smaller sized and often identical robots. The benefits of modular robots are many, chief among them being how easily they can be transported from one location to another. Moreover, their size can be adjusted according to the task at hand without requiring extensive redesign or specialization, therefore making them the object of significant research efforts.
Prof. Minghua Xia, Sun Yat-sen University, China & Prof. Zilong Liu,University of Essex, United Kingdom
Tuesday, November 24, 2020, 16:00
- 17:15
https://kaust.zoom.us/j/97216285585
Contact Person
To suit massive connectivity of machine-type communications in smart cities, this talk discusses the energy-efficient resource allocation for layered-division multiplexing (LDM) based non-orthogonal multicast and unicast transmission in cell-free massive multiple-input multiple-output (MIMO) systems, where each user equipment (UE) performs wireless information and power transfer simultaneously. Non-orthogonal multiple access (NOMA) is an emerging paradigm for the enabling of massive connectivity in 5G networks and beyond.
Tuesday, November 24, 2020, 14:00
- 15:30
https://kaust.zoom.us/s/99681200422
Contact Person
In this talk, I will first give an overview of the research activities in Structural and Functional Bioinformatics Group (http://sfb.kaust.edu.sa). I will then focus on our efforts on developing computational methods to tackle key open problems in Nanopore sequencing. In particular, I will introduce our recent works on developing a collection of computational methods to decode raw electrical current signal sequences into DNA sequences, to simulate raw signals of Nanopore, and to efficiently and accurately align electrical current signal sequences with DNA sequences. I will further introduce their applications in biomedicine and healthcare.
Tuesday, November 24, 2020, 09:00
- 10:00
https://kaust.zoom.us/j/98560746589
Contact Person
Intrinsic connectivity networks (ICNs) refer to brain functional networks that are consistently found under various conditions, during tasks or at rest. Some studies demonstrated that while some stimuli do not impact intrinsic connectivity, other stimuli actually activate intrinsic connectivity through suppression, excitation, moderation or modification. Most analyses of fMRI data use ad-hoc methods to estimate the latent structure of ICNs. Modeling the effects on ICNs has also not been fully investigated. We propose a Bayesian Intrinsic Connectivity Network (BICNet) model, an extended Bayesian dynamic sparse latent factor model, to identify the ICNs and quantify task-related effects on the ICNs. BICNet has the following advantages: (1) It simultaneously identifies the individual and group-level ICNs; (2) It robustly identifies ICNs by jointly modeling rfMRI and tfMRI; (3) Compared to ICA-based methods, it can quantify the difference of ICN amplitudes across different states; (4) The sparsity of ICNs automatically performs feature selection, instead of ad-hoc thresholding. We apply BICNet to the rfMRI and language tfMRI data from the HCP and identify several ICNs related to distinct language processing functions.
José A. Carrillo, Professor, Applied Mathematics at The Queen’s College, University of Oxford, UK
Monday, November 23, 2020, 13:00
- 15:00
https://kaust.zoom.us/j/97308560224
Contact Person
The main goal of this mini course is to discuss the state-of-the-art in understanding the phenomena of long time asympotitcs and phase transitions for a range of nonlinear Fokker-Planck equations with linear and nonlinear diffusion. They appear as natural macroscopic PDE descriptions of the collective behavior of particles such as Cucker-Smale models for consensus, the Keller Segel model for chemotaxis, and the Kuramoto model for synchronization. We will discuss the existence of phase transitions in a variety of these models using the natural free energy of the system and their interpretation as natural gradient flow structure with respect to the Wasserstein distance in probability measures. We will discuss both theoretical aspects as well as numerical schemes and simulations keeping those properties at the discrete level.
Monday, November 23, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/98354721230
Contact Person
The talk will present our decade-long efforts to build an integrated data-driven modeling system to study and predict the circulation and climate of the Arabian Peninsula at all scales. Starting from a general description of the Virtual Red Sea Initiative at its achievements so far, I will then outline our ongoing research under the KAUST Centre of Excellence for NEOM to develop new tools to seamlessly project and study the environment at the urban scales of NEOM. I will in particular discuss the involved scientific opportunities and challenges in terms of computational Sciences, including our extreme computational requirements, and the handling, analysis and visualization of very large datasets.
Sunday, November 22, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/92588396271
Contact Person
Electromagnetic devices and systems are at the heart of technological advances revolutionizing many fields of science and engineering including energy management, biomedical electronics, communications and computing, and even environmental monitoring and civil design. Many of these systems are electrically large, their frequency of operation has a wide dynamic range, their device components are geometrically intricate with dimensions varying by orders of magnitude, and finally their optimal design requires many repetitions of characterizations with different parameters.
Thursday, November 19, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/95474758108?pwd=WkwrdiszTE1uYTdmR3JRK09LVDErZz09
Contact Person
In this talk we consider the problem of estimating the score function (or gradient of the log-likelihood) associated to a class of partially observed diffusion processes, with discretely observed, fixed length, data and finite dimensional parameters. We construct an estimator that is unbiased with no time-discretization bias. Using a simple Girsanov change of measure method to represent the score function, our methodology can be used for a wide class of diffusion processes and requires only access to a time-discretization method such as Euler-Maruyama. Our approach is based upon a novel adaptation of the randomization schemes developed by Glynn and co-authors along with a new coupled Markov chain simulation scheme. The latter methodology is an original type of coupling of the coupled conditional particle filter. We prove that our estimator is unbiased and of finite variance. We then illustrate our methodology on several challenging statistical examples. This is a joint work with Jeremy Heng (ESSEC, Singapore) and Jeremie Houssineau (Warwick, UK)
Monday, November 16, 2020, 12:00
- 13:00
kaust.zoom.us/j/97786201982
Contact Person
We propose a new optimization formulation for training federated learning models. The standard formulation has the form of an empirical risk minimization problem constructed to find a single global model trained from the private data stored across all participating devices. In contrast, our formulation seeks an explicit trade-off between this traditional global model and the local models, which can be learned by each device from its own private data without any communication. Further, we develop several efficient variants of SGD (with and without partial participation and with and without variance reduction) for solving the new formulation and prove communication complexity guarantees.
Sunday, November 15, 2020, 12:00
- 13:00
https://kaust.zoom.us/j/92588396271
Contact Person
Wave functional materials are artificial materials that can control wave propagation as wish. In this talk, I will give a brief review on the progress of wave functional materials and reveal the secret behind the engineering of these materials to achieve desired properties. In particular, I will focus on our contributions on metamaterials and metasurfaces. I will introduce the development of effective medium, a powerful tool in modeling wave functional materials, followed by some illustrative examples demonstrating the intriguing properties, such as redirection, emission rate enhancement, wave steering and cloaking.
Jose Urbano, Professor of Mathematics at the University of Coimbra, Portugal
Thursday, November 12, 2020, 16:00
- 17:30
https://kaust.zoom.us/j/95491279304
Contact Person
The mini-course is an introduction to intrinsic scaling, a powerful method in the analysis of degenerate and singular parabolic PDEs. The local Hölder continuity of bounded weak solutions will be derived from scratch for the model case of the degenerate p-Laplace equation. Our approach is entirely self-contained and focused on the essence of the method, leaving aside technical refinements needed to deal with more general equations.