Skip to main content
King Abdullah University of Science and Technology
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
  • Home
  • Study
    • Prospective Students
    • Current Students
    • Internship Opportunities
  • Research
    • Research Overview
    • Research Areas
    • Research Groups
  • Programs
    • Applied Mathematics and Computational Sciences
    • Computer Science
    • Electrical and Computer Engineering
    • Statistics
  • People
    • All People
    • Faculty
    • Affiliate Faculty
    • Instructional Faculty
    • Research Scientists
    • Research Staff
    • Postdoctoral Fellows
    • Students
    • Alumni
    • Administrative Staff
  • News
  • Events
  • About
    • Who We Are
    • Message from the Dean
    • Leadership Team
  • Apply

ReLU Neural Network

Sharp Approximation Rates for Deep ReLU Neural Networks on Sobolev Spaces

Assistant Professor Jonathan Siegel, Texas A and M University

Nov 22, 15:30 - 17:00

B1 L3 R3119

ReLU Neural Network Sobolev Spaces

Sobolev spaces are centrally important objects in PDE theory. Consequently, to understand how deep neural networks can be used to numerically solve PDEs a necessary first step is to determine now efficiently they can approximate Sobolev functions. In this talk we consider this problem for deep ReLU neural networks, which are the most important class of neural networks in practical applications.

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE)

Connect with us

Footer

  • A-Z Directory
    • All Content
    • Announcements
    • Browse Related Sites
  • Site Management
    • Log in

© 2024 King Abdullah University of Science and Technology. All rights reserved. Privacy Notice