An approximate multiplier based hardware implementation of the izhikevich model

1 min read ·

About

Hassan, Salma, et al., "An approximate multiplier based hardware implementation of the izhikevich model." IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2018, 492.

This paper proposes the use of approximate multipliers in the hardware implementation of Izhikevich spiking neuron model. The accuracy of the model is investigated by calculating various types of errors on a single neuron and this analysis shows that the proposed model follows the original model. It shows that the proposed model reproduces the same firing patterns as the original one. The network behavior is also studied and proved that the model has the same activity patterns of the original one. Moreover, the proposed neuron exhibits better accuracy than the piecewise linear approximation of the Izhikevich model.