1. Krupskii, P., Harrou, F., Hering, A.S. and Sun, Y., 2019. Copula-based monitoring schemes for non-Gaussian multivariate processes. Journal of Quality Technology, pp.1-16.
  2. Harrou, F., Taghezouit, B. and Sun, Y., 2019. Robust and flexible strategy for fault detection in grid-connected photovoltaic systems. Energy Conversion and Management, 180, pp.1153-1166.
  3. Harrou, F., Dairi, A., Taghezouit, B. and Sun, Y., 2019. An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine. Solar Energy, 179, pp.48-58.
  4. Harrou, F., Taghezouit, B. and Sun, Y., 2019. Improved kNN-Based Monitoring Schemes for Detecting Faults in PV Systems. IEEE Journal of Photovoltaics, 9, n0. 3: 811 – 821.
  5. Zeroual, A., Harrou, F. and Sun, Y., 2019. Road traffic density estimation and congestion detection with a hybrid observer-based strategy. Sustainable Cities and Society, 46, p.101411
  6. Zerrouki, N., Harrou, F., Sun, Y. and Hocini, L., 2019. A Machine Learning-based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements. IEEE Sensors Journal.
  7. Cheng, T., Harrou, F., Sun, Y. and Leiknes, T., 2018. Monitoring influent measurements at water resource recovery facility using data-driven soft sensor approach. IEEE Sensors Journal, 19(1), pp.342-352.
  8. Harrou, F., Khaldi, B., Sun, Y. and Cherif, F., 2018. Monitoring robotic swarm systems under noisy conditions using an effective fault detection strategy. IEEE Sensors Journal, 19(3), pp.1141-1152.
  9. Harrou, F., Dairi, A., Sun, Y., and Senouci, M. (2018). Statistical monitoring of a wastewater treatment plant: A case study. Journal of environmental management, 223, 807-814.
  10. Zerrouki, N., Harrou, F., Sun, Y., and Houacine, A. (2018). Vision-based Human Action Classification Using Adaptive Boosting Algorithm. IEEE Sensors Journal, 18(12), 5115-5121.
  11. Zerrouki, N., Harrou, F., and Sun, Y. (2018). Statistical Monitoring of Changes to Land Cover. IEEE Geoscience and Remote Sensing Letters, 15(6), 927-931.
  12. Harrou, F., Dairi, A., Sun, Y., and Kadri, F. (2018). Detecting Abnormal Ozone Measurements With a Deep Learning-Based Strategy. IEEE Sensors Journal, 18(17), 7222-7232.
  13. Dairi, A., Harrou, F., Senouci, M., and Sun, Y. (2018). Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robotics and Autonomous Systems, 100, 287-301.
  14. Harrou, F., Sun, Y., Madakyaru, M., and Bouyedou, B. (2018). An improved multivariate chart using partial least squares with continuous ranked probability score. IEEE Sensors Journal, 18(16), 6715-6726.
  15. Dairi, A., Harrou, F., Sun, Y., and Senouci, M. (2018). Obstacle Detection for Intelligent Transportation Systems Using Deep Stacked Autoencoder and k-Nearest Neighbor Scheme. IEEE Sensors Journal, 18(12), 5122-5132.
  16. Zeroual, A., Harrou, F., Sun, Y., and Messai, N. (2018). Integrating Model-Based Observer and Kullback-Leibler Metric for Estimating and Detecting Road Traffic Congestion. IEEE Sensors Journal, 18(20), 8605-8616.
  17. [18]    Khaldi, B., Harrou, F., Sun, Y., and Cherif, F. (2018). Self-Organization in Aggregating Robot Swarms: A DW-KNN Topological Approach, BioSystems Journal, Elsevier, 165, 106-121.
  18. Harrou, F., Sun, Y., Taghezouit, B., Saidi, A., and Hamlati, M. E. (2018). Reliable fault detection and diagnosis of photovoltaic systems based on statistical monitoring approaches. Renewable Energy, 116, 22-37.
  19. Harrou F,  Zerrouki N,  Sun Y,  Houacine A, (2017) Vision-Based Fall Detection System for Improving Safety of Elderly People, IEEE Instrumentation & Measurement Magazine, Vol. 20, No. 6, pp. 49-56.
  20. Khaldi, B., Harrou, F., Cherif, F., Sun, Y. (2017). Monitoring a robot swarm using a data-driven fault detection approach. Robotics and Autonomous Systems97, 193-203. (KAUST Discovery Highlight)
  21. Harrou, F., Sun, Y. and Madakyaru, M., (2017). An Improved Wavelet‐Based Multivariable Fault Detection Scheme. In Uncertainty Quantification and Model Calibration. InTech
  22. Harrou, F., Madakyaru, M. and Sun, Y., (2017). Improved nonlinear fault detection strategy based on the Hellinger distance metric: Plug flow reactor monitoring. Energy and Buildings, 143, pp.149-161.
  23. Zeroual, A., Harrou, F., Sun, Y.,  Messai, N. (2017). Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme. Sustainable Cities and Society, 35, 494-510.
  24. Garoudja, E., Harrou, F., Sun, Y., Kara, K., Chouder, A. and Silvestre. S. (2017), "Statistical fault detection in photovoltaic systems," Solar Energy, 150, 485-499.
  25. Madakyaru, M., Harrou, F. and Sun, Y. (2017), "Improved data-based fault detection strategy and application to distillation columns," Process Safety and Environmental Protection, 107, 22-34.
  26. Harrou, F., Madakyaru, M., Sun, Y., (2016).  Incipient Anomaly Detection Using PCA with Multivariate Memory Monitoring Charts: Application to An Air Flow Heating System.   Applied Thermal Engineering (Elsevier),109: 65-74. (KAUST Discovery Highlight)
  27. Harrou, F., Sun, Y. and Madakyaru, M. (2016), "Kullback-Leibler distance-based enhanced detection of incipient anomalies," Journal of Loss Prevention in the Process Industries (Elsevier), 44, 73-87.    
  28. Harrou, F., and Sun, Y. (2016), "Statistical monitoring of linear antenna arrays," Engineering Science and Technology, an International Journal19, 1781-1787. (KAUST Discovery Highlight).
  29. Zerrouki, N., Harrou, F. Sun, Y. and Houacine, A. (2016), "Accelerometer and camera-based strategy for improved human fall detection," Journal of Medical Systems , 40: 284. (KAUST Discovery Highlight)
  30. Harrou, F., Madakyaru, M., Sun, Y. and Khadraoui, S. (2016), "Improved detection of incipient anomalies via multivariate memory monitoring charts: application to an air flow heating system," Applied Thermal Engineering, 109, 65-74. (KAUST Discovery Highlight)
  31. Harrou, F., Kadri, F., Khadraoui, S. and Sun, Y. (2016), "Ozone measurements monitoring using data-based approach," Process Safety and Environmental Protection, 100, 220-231. (KAUST Discovery Highlight).
  32. Harrou, F., Sun, Y. and Khadraoui, S. (2016), "Amalgamation of anomaly-detection indices for enhanced process monitoring," Journal of Loss Prevention in the Process Industries, 40, 365-377.
  33. Kadri, F., Harrou, F., Chaabane, S., Sun, Y. and Tahon, C. (2016), "Seasonal ARMA-based SPC charts for anomaly detection: application to emergency department systems," Neurocomputing, 173, 2102-2114.
  34. Harrou, F., Kadri, F., Chaabane, S., Tahon, C. and Sun, Y. (2015), "Improved principal component analysis for anomaly detection: application to an emergency department," Computers & Industrial Engineering, 88, 63-77.