Thursday, December 16, 2021, 14:00
- 15:00
Building 1, Level 3, Room 3119
Contact Person
High-accuracy indoor localization and tracking systems are essential for many modern applications and technologies. However, accurate location estimation of moving targets is challenging. This thesis addresses the challenges in indoor localization and tracking systems and proposes several solutions. A novel signal design, which we named Differential Zadoff-Chu, allows us to develop algorithms that accurately estimate the distances of static and moving targets even under random Doppler shifts. The results show that the proposed algorithms outperform the state-of-the-art in terms of both accuracy and complexity.