Book

 

Genton, M. G. (2004), Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality, Edited Volume, Chapman & Hall / CRC, Boca Raton, FL, 416 pp.​


Surface Boxplots (zipped file)

 



 2024

 

[305] Hu, Z., Tong, T., and Genton, M. G. (2024), "A pairwise Hotelling method for testing high-dimensional mean vectors," Statistica Sinica, 34to appear.

 


 2023

 

[304] Abdulah, S., Li, Y., Cao, J., Ltaief, H., Keyes, D. E., Genton, M. G., and Sun, Y. (2023), "Large-scale environmental data science with ExaGeoStatR," Environmetrics, 34:e2770. (cover)

[303] Cao, Q., Abdulah, S., Ltaief, H., Genton, M. G. Genton, M. G., Keyes, D. E.and Bosilca, G. (2023), "Reducing data motion and energy consumption of geospatial modeling applications using automated precision conversion," IEEE International Conference on Cluster Computing, to appear.

[302] Chen, W., and Genton, M. G. (2023), "Are you all normal? It depends!," International Statistical Review, 91, 114-139.

[301] Das, S., Alshehri, Y. M., Stenchikov, G. L., and Genton, M. G. (2023), "A space-time model with temporal cyclostationarity for probabilistic forecasting and simulation of solar irradiance data," Stat, 12:e583.

[300] Huang, H., Castruccio, S., Baker, A. H., and Genton, M. G. (2023), "Saving storage in climate ensembles: A model-based stochastic approach (with discussion)," Journal of Agricultural, Biological, and Environmental Statistics, 28, 324-344. (Disc1, Disc2, Disc3, Disc4, Disc5, Rejoinder)

[299] Huang, H., Sun, Y., and Genton, M. G. (2023), "Test and visualization of covariance properties for multivariate spatio-temporal random fields," Journal of Computational and Graphical Statistics, to appear.

[298] Karling, M., Genton, M. G., and Meintanis, S. G. (2023), "Goodness-of-fit tests for multivariate skewed distributions based on the characteristic function," Statistics and Computing, 33:99.

[297] Martinez-Hernandez, I., and Genton, M. G. (2023), "Surface time series models for large spatio-temporal datasets," Spatial Statistics, 53:100718.​

[296] Mondal, S., Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2023), "Tile low-rank approximations of non-Gaussian spatial and space-time Tukey g-and-h random field likelihoods and predictions on large-scale systems," Journal of Parallel and Distributed Computing, 180:104715..

[295] Mondal, S., Arellano-Valle, R. B., and Genton, M. G. (2023), "The multivariate modified skew-normal distribution," Statistical Papers, to appear.

[294] Ojo, O. T., Fernandez Anta, A., Genton, M. G., and Lilo, R. E. (2023), "Multivariate functional outlier detection using the fast massive unsupervised outlier detection indices," Stat, 12:e567.

[293] Porcu, E., White, P., and Genton, M. G. (2023), "Stationary non-separable space-time covariance functions on networks," Journal of the Royal Statistical Society - Series B, to appear.

[292] Qu, Z., Dai, W., and Genton, M. G. (2023), "Robust two-layer partition clustering of sparse multivariate functional data," Econometrics and Statistics, to appear.

[291] Salvana, M. L., Lenzi, A., and Genton, M. G. (2023), "Spatio-temporal cross-covariance functions under the Lagrangian framework with multiple advections," Journal of the American Statistical Association, to appear.

[290] Wang, K., Arellano-Valle, R. B., Azzalini, A., and Genton, M. G. (2023), "On the non-identifiability of unified skew-normal distributions," Stat, 12:e597.

[289] Zhang, J., Crippa, P., Genton, M. G., and Castruccio, S. (2023), "Sensitivity analysis of wind energy resources with Bayesian non-Gaussian and non-stationary functional ANOVA," Annals of Applied Statistics, to appear.

[288] Zhang, Z., Arellano-Valle, R. B., Genton, M. G., and Huser, R. (2023), "Tractable Bayes of skew-elliptical link models for correlated binary data," Biometrics, 79, 1788-1800.


 2022

 

[287] Abdulah, S., Castruccio, S., Genton, M. G., and Genton, M. G.Genton, M. G.Sun, Y. (2022), "Editorial: Large-scale spatial data science," Journal of Data Science, 20, 437-438.

[286] Abdulah, S., Alamri, F., Nag, P., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2022), "The second competition on spatial statistics for large data sets," Journal of Data Science, 20, 439-460.

[285] Abdulah, S., Cao, Q., Pei, Y., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H., and Sun, Y. (2022), "Accelerating geostatistical modeling and prediction with mixed-precision computations: A high-productivity approach with PaRSEC," IEEE Transactions on Parallel and Distributed Systems, 33, 964-976.

[284] Bastos, F., Barreto-Souza, W., and Genton, M. G. (2022), "A generalized Heckman model with varying sample selection bias and dispersion parameters," "A generalized Heckman model with varying sample selection bias and dispersion parameters,"Statistica Sinica, 32, 1911-1938.

[283] Cao, J., Durante, D., and Genton, M. G. (2022), "Scalable computation of predictive probabilities in probit models with Gaussian process priors," Journal of Computational and Graphical Statistics, 31, 709-720.​

[282] Cao, J., Genton, M. G., Keyes, D. E., and Turkiyyah, G. (2022), "tlrmvnmvt: Computing high-dimensional multivariate normal and Student-t probabilities with low-rank methods in R," Journal of Statistical Software, 101:4.​

[281] Cao, J., Guiness, J., Genton, M. G., and Katzfuss, M. (2022), "Scalable Gaussian-process regression and variable selection using Vecchia approximations," Journal of Machine Learning Research, 23 (348), 1-30.

[280] Cao, Q., Abdulah, S., Alomairy, R., Pei, Y., Nag, P., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H., and Sun, Y. (2022), "Reshaping geostatistical modeling and prediction for extreme-scale environmental applications," in International Conference for High Performance Computing, Networking, Storage and Analysis (SC22), Dallas, TX, US, 13-24. 

[279] Chowdhury, J., Dutta, S., Arellano-Valle, R. B., and Genton, M. G. (2022), "Sub-dimensional Mardia measures of multivariate skewness and kurtosis," Journal of Multivariate Analysis, 192:105089.

[278] Genton, M. G., and Sun, Y. (2022), ​"Functional data visualization,"  in Piegorsch, W. W., Levine, R. A., Zhang, H. H., and Lee, T. C. M. (eds),  Computational Statistics in Data Science, pp. 457-467, Chichester: John Wiley & Sons, ISBN: 978-1-119-56107-1.

[277] Giani, P., Genton, M. G., and Crippa, P. (2022), "Modeling the convective boundary layer in the Terra Incognita: Evaluation of different strategies with real-case simulations," Monthly Weather Review, 150, 981-1001.

[276] Huang, H., Castruccio, S., and Genton, M. G. (2022), "Forecasting high-frequency spatio-temporal wind power with dimensionally reduced echo state networks," Journal of the Royal Statistical Society - Series C, 71, 449-466. 

[275] Ltaief, H., Genton, M. G., Gratadour, D., Keyes, D. E., and Ravasi, M. (2022), "Responsibly reckless matrix algorithms for HPC scientific applications," Computing in Science & Engineering, 24, 12-22.

[274] Mondal, S., Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2022), "Parallel approximations of the Tukey g-and-h likelihoods and predictions for non-Gaussian geostatistics," International Parallel and Distributed Processing Symposium, 379-389.​

[273] Qu, Z., and Genton, M. G. (2022), "Sparse functional boxplots for multivariate curves," Journal of Computational and Graphical Statistics, 31, 976-989.

[272] Salvana, M. L., Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2022), "Parallel space-time likelihood optimization for air pollution prediction on large-scale systems," in Platform for Advanced Scientific Computing Conference (PASC '22), Basel, Switzerland, Article No. 17, 1-11.


 2021

[271] Arellano-Valle, R. B., Harnik, S. B., and Genton, M. G. (2021), "On the asymptotic joint distribution of multivariate sample moments," in Advances in Statistics - Theory and Applications: Honoring the Contributions of Barry C. Arnold in Statistical Science, I. Ghosh, N. Balakrishnan, H. K. T. Ng (eds), 181-206.​

[270] Cao, J., Genton, M. G., Keyes, D. E., and Turkiyyah, G. (2021), "Sum of Kronecker products representation and its Choleski factorization for spatial covariance matrices from large grids," Computational Statistics and Data Analysis - Annals of Statistical Data Science, 157:107165.​

[269] Cao, J., Genton, M. G., Keyes, D. E., and Turkiyyah, G. (2021), "Exploiting low rank covariance structures for computing high-dimensional normal and Student-t probabilities," Statistics and Computing, 31:2.​

[268] Chen, W., Castruccio, S., and Genton, M. G. (2021), "Assessing the risk of disruption of wind turbine operations in Saudi Arabia using Bayesian spatial extremes," Extremes, 24, 267-292.

[267] Chen, W., Genton, M. G., and Sun, Y. (2021), "Space-time covariance structures and models," Annual Review of Statistics and Its Application, 8, 191-215. 

[266] Crippa, P., Alifa, M., Bolster, D., Genton, M. G., and Castruccio, S. (2021), "A temporal model for vertical extrapolation of wind speed and wind energy assessment," Applied Energy, 301:117378

[265] Dao, A., and Genton, M. G. (2021), "Skew-elliptical cluster processes," in Advances in Statistics - Theory and Applications: Honoring the Contributions of Barry C. Arnold in Statistical Science, I. Ghosh, N. Balakrishnan, H. K. T. Ng (eds), 365-393.​

[264] Das, S., Genton, M. G., Alshehri, Y. M., and Stenchikov, G. L. (2021), "A cyclostationary model for temporal forecasting and simulation of temporal solar horizontal irradiance," Environmetrics, 32:e2700.

[263] Das, S., and Genton, M. G. (2021), "Cyclostationary processes with evolving periods and amplitudes," IEEE Transactions on Signal Processing, 69, 1579-1690.

[262] Hong, Y., Abdulah, S., Genton, M. G., and Sun, Y. (2021), "Efficiency assessment of approximated spatial predictions for large datasets," Spatial Statistics, 43:100517. 

[261] Huang, H., Abdulah, S., Sun, Y., Ltaief, H., Keyes, D. E., and Genton, M. G. (2021), "Competition on spatial statistics for large datasets (with discussion),"  Journal of Agricultural, Biological, and Environmental Statistics, 26, 580-595. (Discussion 1, 2, 3, 4, 5, 6,  rejoinder)

[260] Huang, J., Cao, J., Fang, F., Genton, M. G., Keyes, D. E., and Turkiyyah, G. (2021), "An O(N) algorithm for computing expectation of N-dimensional truncated multi-variate normal distribution I: Fundamentals,"  Advances in Computational Mathematics, 47:65. 

[259] Krupskii, P., and Genton, M. G. (2021), "Conditional normal extreme-value copulas," Extremes, 24, 403-431.

[258] Lenzi, A., Castruccio, S., Rue, H., and Genton, M. G. (2021), "Improving Bayesian local spatial models in large data sets,"  Journal of Computational and Graphical Statistics, 30, 349-359.​

[257] Martinez-Hernandez, I., and Genton, M. G. (2021), "Nonparametric trend estimation in functional time series with application to annual mortality rates," Biometrics, 77, 866–878.​

[256] Qu, Z., Dai, W., and Genton, M. G. (2021), "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, 32:e2641.

[255] Salvana, M. L., Abdulah, S., Huang, H., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2021), "High performance multivariate geospatial statistics on manycore systems," IEEE Transactions on Parallel and Distributed Systems, 32, 2719-2733. 

[254] Salvana, M. L., and Genton, M. G. (2021), "Lagrangian spatio-temporal nonstationary covariance functions," in Advances in Contemporary Statistics and Econometrics - Festschrift in Honor of Christine Thomas-Agnan, A. Daouia, A. Ruiz-Gazen (eds), 427-447. 

[253] Yan, Y., Huang, H.-C., and Genton, M. G. (2021), "Vector autoregressive models with spatially structured coefficients for time series on a spatial grid," Journal of Agricultural, Biological, and Environmental Statistics, 26, 387-408. 

[252] Zhang, J., Crippa, P., Genton, M. G., and Castruccio, S. (2021), "Assessing the reliability of wind power operations under a changing climate with a non-Gaussian bias correction," Annals of Applied Statistics, 15, 1831-1849.


 

 2020

 

[251] Bachoc, F., Genton, M. G., Nordhausen, K., Ruiz-Gazen, A., and Virta, J. (2020), "Spatial blind source separation," Biometrika, 107, 627-646.​

[250] Dai, W., Mrkvicka, T., Sun, Y., and Genton, M. G. (2020), ​"Functional outlier detection and taxonomy by sequential transformations," Computational Statistics and Data Analysis, 149:106960.

[249] Das, S., and Genton, M. G. (2020), ​"On the stationary marginal distributions of subclasses of multivariate SETAR processes of order one," Journal of Time Series Analysis, 41, 406-420.

[248] Genton, M. G., and Sun, Y. (2020), ​"Functional data visualization," in Wiley StatsRef: Statistics Reference Online, Davidian, M., Kenett, R. S., Longford, N. T., Molenberghs, G., Piegorsch, W. W., and Ruggeri, F. (eds), Chichester: John Wiley & Sons, Article No. stat08290, DOI: 10.1002/9781118445112.stat08290.

[247] Giani, P., Tagle, F., Genton, M. G., Castruccio, S., and Crippa, P. (2020), "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, 269:115085.

[246] Lenzi, A., and Genton, M. G. (2020), ​"Spatio-temporal probabilistic wind vector forecasting over Saudi Arabia," Annals of Applied Statistics, 14, 1359-1378.

[245] Litvinenko, A., Kriemann, R., Genton, M. G., Sun, Y., and Keyes, D. (2020), "HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification,"  MethodsX7:100600.​

[244] Martinez-Hernandez, I., and Genton, M. G. (2020), "Recent developments in complex and spatially correlated functional data," Brazilian Journal of Probability and Statistics, 34, 204-229.​

[243] Porcu, E., Bevilacqua, M., and Genton, M. G. (2020), ​"Nonseparable space-time covariance functions with dynamical compact supports," Statistica Sinica, 30, 719-739.

[242] Salvana, M. L., and Genton, M. G. (2020), "Nonstationary cross-covariance functions for multivariate spatio-temporal random fields," Spatial Statistics, 37:100411.

[241] Shi, J., Tong, T., Wang, Y., and Genton, M. G. (2020), "Estimating the mean and variance from the five-number summary of a log-normal distribution," Statistics and Its Interface, 13, 519-531.

[240] Tagle, F., Castruccio, S., and Genton, M. G. (2020), "A hierarchical bi-resolution spatial skew-t model," Spatial Statistics, 35:100398.

[239] Tagle, F., Genton, M. G., Yip, A., Mostamandi, S., Stenchikov, G., and Castruccio, S. (2020), "A high-resolution bi-level skew-t stochastic generator for assessing Saudi Arabia's wind energy resources (with discussion)," Environmetrics, 31:e2628. (discussion 1234rejoinder​)

[238] Vettori, S., Huser, R., Segers, J., and Genton, M. G. (2020), "Bayesian model averaging over tree-based dependence structures for multivariate extremes," Journal of Computational and Graphical Statistics, 29, 174-190.

[237] Yan, Y., Jeong, J., and Genton, M. G. (2020), "Multivariate transformed Gaussian processes," Japanese Journal of Statistics and Data Science, 3, 129-152.

[236] Yao, Z., Dai, W., and Genton, M. G. (2020), "Trajectory functional boxplots," Stat, 9:e289.


 

 

 2019

 

[235] Abdulah, S., Ltaief, H., Sun, Y., Genton, M. G., and Keyes, D. E. (2019), "Geostatistical modeling and prediction using mixed-precision tile Cholesky factorization," IEEE 26th International Conference on High-Performance Computing, Data, and Analytics (HiPC), 152-162. 

[234] Cao, J., Genton, M. G., Keyes, D. E., and Turkiyyah, G. (2019), "Hierarchical-block conditioning approximations for high-dimensional multivariate normal probabilities,"​ Statistics and Computing, 29, 585-598.​

[233] Castruccio, S., Genton, M. G., and Sun, Y. (2019), "Visualising spatio-temporal models with virtual reality: From fully immersive environments to apps in stereoscopic view," Journal of the Royal Statistical Society - Series A182, 379-387. (read before the Royal Statistical Society, Discussion and Rejoinder​)

[232] Chen, W., and Genton, M. G. (2019), "Parametric variogram matrices incorporating both bounded and unbounded functions," Stochastic Environmental Research and Risk Assessment, 33, 1669-1679.

[231] Dai, W., and Genton, M. G. (2019), "Directional outlyingness for multivariate functional data," Computational Statistics and Data Analysis131, 50-65.

[230] Genton, M. G., and Sun, Y. (2019), discussion of "Data science, big data, and statistics," by P. Galeano and D. Pena, TEST, 28, 338-341.

[229] Hernandez-Magallanes, I., and Genton, M. G. (2019), ​"A point process analysis of cloud-to-ground lightning strikes in urban and rural Oklahoma areas,"​​ Environmetrics30:e2535.

[228] Hu, Z., Tong, T., and Genton, M. G. (2019), ​"Diagonal likelihood ratio test for equality of mean vectors in high-dimensional data," Biometrics, 75, 256-267.

[227] Huser, R., Dombry, C., Ribatet, M., and Genton, M. G. (2019), "Full likelihood inference for max-stable data," Stat8:e218.

[226] Jeong, J., Yan, Y., Castruccio, S., and Genton, M. G. (2019), ​"A stochastic generator of global monthly wind energy with Tukey g-and-h autoregressive processes," Statistica Sinica, 29, 1105-1126.

[225] Krupskii, P., and Genton, M. G. (2019), "A copula model for non-Gaussian multivariate spatial data," Journal of Multivariate Analysis