Skip to main content
King Abdullah University of Science and Technology
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
  • Home
  • Study
    • Prospective Students
    • Current Students
    • Internship Opportunities
  • Research
    • Research Overview
    • Research Areas
    • Research Groups
  • Programs
    • Applied Mathematics and Computational Sciences
    • Computer Science
    • Electrical and Computer Engineering
    • Statistics
  • People
    • All People
    • Faculty
    • Affiliate Faculty
    • Instructional Faculty
    • Research Scientists
    • Research Staff
    • Postdoctoral Fellows
    • Students
    • Alumni
    • Administrative Staff
  • News
  • Events
  • About
    • Who We Are
    • Message from the Dean
    • Leadership Team
  • Apply

Fog-Radio Access

Webinar on Resource Allocation in Cloud-Radio Access Networks and Fog-Radio Access Networks for B5G Systems

Omar Knio, Professor, Applied Mathematics and Computational Sciences
Oct 27, 15:45 - 17:15

KAUST

Fog-Radio Access cloud-radio access

First Speaker: Megumi Kaneko, National Institute of Informatics, Japan. Talk Title: Resource Allocation in NOMA-Based Fog Radio Access Networks. In this talk, I will first describe the potential benefits offered by the integration of NOMA in an FRAN architecture for achieving the specific objectives of use cases envisioned in B5G, in terms of throughput, latency, reliability and energy efficiency. Second Speaker: Bruno Clerckx, Imperial College London, United Kingdom. Talk Title: Rate-Splitting Multiple Access and its Applications to Cloud-Enabled Platforms. This talk argues that to efficiently cope with the high throughput, reliability, heterogeneity of Quality-of-Service (QoS), and massive connectivity requirements of future multi-antenna wireless networks, multiple access and multiuser communication system design need to depart from the two extreme interference management strategies, namely fully treat interference as noise (as commonly used in 5G, MU-MIMO, CoMP, Massive MIMO, millimetre wave MIMO) and fully decode interference (as in NOMA).

Computer, Electrical and Mathematical Sciences and Engineering (CEMSE)

Connect with us

Footer

  • A-Z Directory
    • All Content
    • Announcements
    • Browse Related Sites
  • Site Management
    • Log in

© 2025 King Abdullah University of Science and Technology. All rights reserved. Privacy Notice