Skip to main content
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
Home
Study
Prospective Students
Current Students
Internship Opportunities
Research
Research Overview
Research Areas
Research Groups
Programs
Applied Mathematics and Computational Sciences
Computer Science
Electrical and Computer Engineering
Statistics
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Students
Alumni
Administrative Staff
News
Events
About
Who We Are
Message from the Dean
Leadership Team
Apply
GCN
EE+CS Graduate Seminar: Deep Graph Convolutional Networks
Bernard Ghanem, Professor, Electrical and Computer Engineering
Mar 29, 12:00
-
13:00
KAUST
Deep learning
GCN
In this talk, I will present a line of work done at the Image and Video Understanding Lab (IVUL), which focuses on developing deep graph convolutional networks (DeepGCNs). A GCN is a deep learning network that processes generic graph inputs, thus extending the impact of deep learning to irregular grid data including 3D point clouds and meshes, social graphs, protein interaction graphs, etc. By adapting architectural operations from the CNN realm and reformulating them for graphs, we were the first to show that GCNs can go as deep as CNNs. Developing such a high capacity deep learning platform for generic graphs opens up many opportunities for exciting research, which spans applications in the field of computer vision and beyond, architecture design, and theory. In this talk, I will showcase some of the GCN research done at IVUL and highlight some interesting research questions for future work.