Skip to main content
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
Home
Study
Prospective Students
Current Students
Internship Opportunities
Research
Research Overview
Research Areas
Research Groups
Programs
Applied Mathematics and Computational Sciences
Computer Science
Electrical and Computer Engineering
Statistics
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Students
Alumni
Administrative Staff
News
Events
About
Who We Are
Message from the Dean
Leadership Team
Apply
model interpretability
Explainability and Efficiency in Spatio-Temporal Models: Applications to Traffic Forecasting
Xiaochuan Gou, Ph.D. Student, Computer Science
Jul 6, 15:00
-
18:00
B5 L5 R5209
traffic forecasting
Graph Neural Networks
model interpretability
This dissertation addresses key challenges in deep learning-based traffic forecasting, including computational efficiency, model interpretability, and data limitations, despite recent progress in spatio-temporal modeling techniques.