Skip to main content
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
Home
Study
Prospective Students
Current Students
Internship Opportunities
Research
Research Overview
Research Areas
Research Groups
Programs
Applied Mathematics and Computational Sciences
Computer Science
Electrical and Computer Engineering
Statistics
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Students
Alumni
Administrative Staff
News
Events
About
Who We Are
Message from the Dean
Leadership Team
Apply
spectral density function
Bayesian Non-parametric Models for Time Series Decomposition
Guillermo C. Granados Garcia, Ph.D. Student, Statistics
Jan 5, 17:00
-
19:00
B1 R4214
spectral density function
The standard approach to analyzing brain electrical activity is to examine the spectral density function (SDF) and identify frequency bands, defined apriori, that have the most substantial relative contributions to the overall variance of the signal. However, a limitation of this approach is that the precise frequency and bandwidth of oscillations are not uniform across cognitive demands. Thus, these bands should not be arbitrarily set in any analysis. To overcome this limitation, we propose three Bayesian Non-parametric models for time series decomposition, which are data-driven approaches that identify (i) the number of prominent spectral peaks, (ii) the frequency peak locations, and (iii) their corresponding bandwidths (or spread of power around the peaks).