Skip to main content
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
Home
Study
Prospective Students
Current Students
Internship Opportunities
Research
Research Overview
Research Areas
Research Groups
Programs
Applied Mathematics and Computational Sciences
Computer Science
Electrical and Computer Engineering
Statistics
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Students
Alumni
Administrative Staff
News
Events
About
Who We Are
Message from the Dean
Leadership Team
Apply
symmetric eigenvalue problem
Dalal Sukkari
Ph.D.,
Applied Mathematics and Computational Sciences
polar decomposition
svd
dense linear algebra
High Performance Computing
symmetric eigenvalue problem
Research interests and present research project. Dalal's research centers on a new high performance implementation of the QR-based Dynamically Weighted Halley iterations (QDWH) to compute the polar decomposition and its application to the SVD (QDWH-SVD). She has introduced a high performance QDWH-SVD implementation on multicore architecture enhanced with multiple GPUs, and on distributed memory based on the state-of-the-art vendor-optimized numerical library ScaLAPACK, and has presented the first asynchronous, task-based formulation of the polar decomposition QDWH and its corresponding