Tuesday, September 12, 2023, 15:00
- 17:00
Building 1, Level 4, Room 4214
Contact Person
This dissertation focuses on the relative energy analysis of two-species fluids composed of charged particles. In particular, it explores several applications of the relative energy method to Euler-Poisson systems, enabling a comprehensive stability analysis of these systems.
Thursday, July 06, 2023, 15:00
- 16:00
Building 1, Level 4, Room 4214
Contact Person
We consider the incompressible axisymmetric Navier-Stokes equations as an idealized model of tornado-like flows. Assuming that an infinite vortex line that interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and the axisymmetric Navier-Stokes equations emphasizing the connection among them as the viscosity ν → 0.
Edmond Chow, Professor and Associate Chair, School of Computational Science and Engineering, Georgia Institute of Technology
Tuesday, June 06, 2023, 16:00
- 17:00
Building 2, Level 5, Room 5220
Coffee Time: 15:30 - 16:00. Kernel matrices can be found in computational physics, chemistry, statistics, and machine learning. Fast algorithms for matrix-vector multiplication for kernel matrices have been developed, and is a subject of continuing interest, including here at KAUST. One also often needs fast algorithms to solve systems of equations involving large kernel matrices. Fast direct methods can sometimes be used, for example, when the physical problem is 2-dimensional. In this talk, we address preconditioning for the iterative solution of kernel matrix systems. The spectrum of a kernel matrix significantly depends on the parameters of the kernel function used to define the kernel matrix, e.g., a length scale.
Dr. Matthew Schrecker, Departments of Mathematics, University College London
Thursday, March 16, 2023, 16:00
- 17:00
Building 1, Level 4, Room 4102
Contact Person
The Euler-Poisson equations give the classical model of a self-gravitating star under Newtonian gravity. It is widely expected that, in certain regimes, initially smooth initial data may give rise to blow-up solutions, corresponding to the collapse of a star under its own gravity. In this talk, I will present recent work with Yan Guo, Mahir Hadzic and Juhi Jang that demonstrates the existence of smooth, radially symmetric, self-similar blow-up solutions for this problem. I will also comment on the stability of the obtained solution. At the heart of the analysis is the presence of a sonic point, a singularity in the self-similar model that poses serious analytical challenges in the search for a smooth solution.
Prof. Manoussos Grillakis, Department of Mathematics, University of Maryland in College Park.
Wednesday, December 07, 2022, 15:30
- 17:00
Building 1, Level 3, Room 3119
A Bose gas at zero temperature is described by a mean field which satisfies the cubic nonlinear Schr¨odinger equation (NLS) otherwise known as the Gross- Pitaevski equation. The mean field describes the evolution of the condensate in an average sense. I will describe a technique that introduces pair correlations in the evolution of the condensate. The resulting approximation tracks the evolu- tion of the condensate in norm provided that the pair wave-function satisfies an interesting system of coupled NLS equations. I will discuss the nonlinear struc- ture of the NLS system as well as a novel approach to the question of global existence of solutions of the system.
Prof. Manoussos Grillakis, Departments of Mathematics, University of Maryland
Sunday, November 27, 2022, 13:00
- 15:00
Building 1, Level 4, Room 4214
Contact Person
The Wave Map system describes the evolution of waves constrained on a (Riemannian)  manifold. For the 2 + 1 dimensional problem, when the target manifold is a sphere, the solution collapses in finite time. The Analysis is due to the pioneering work of Merle, Paphael and Rodnianski. Motivated by their work I will present a somewhat novel approach of the collapsing mechanism which is based on a view of the equations as a nonlinear gauge system. This is joint work with Dan Geba.
Monday, November 09, 2020, 17:00
- 19:00
https://kaust.zoom.us/j/98175362000
Contact Person
In my thesis, I consider the system of thermoelasticity endowed with polyconvex energy. After presenting the equations in their mathematical and physical context, I embed the equations of polyconvex thermoviscoelasticity into an augmented, symmetrizable, hyperbolic system which possesses a convex entropy. This allows to prove many important stability results, such as convergence from thermoviscoelasticity (with Newtonian viscosity and Fourier heat conduction) to smooth solutions of the system of adiabatic thermoelasticity, and convergence from thermoviscoelasticity to smooth solutions of thermoelasticity in the zero-viscosity limit. In addition, I establish a weak-strong uniqueness result in the class of entropy weak solutions and in a suitable class of measure-valued solutions, defined by means of generalized Young measures that describe both oscillatory and concentration effects. Also, I construct a variational scheme for isentropic processes of adiabatic polyconvex thermoelasticity: I establish existence of minimizers which converge to a measure-valued solution that dissipates the total energy, while the scheme converges when the limiting solution is smooth.
Marco Di Francesco, Associate Professor, Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila (Italy)
Tuesday, February 25, 2020, 14:00
- 15:00
Building, Level 3, Room 3119
Approximating the solution to an evolutionary partial differential equation by a set of "moving particles" has several advantages. It validates the use of a continuity equation in an "individuals-based" modeling setting, it provides a link between Lagrangian and Eulerian description, and it defines a "natural" numerical approach to those equations. I will describe recent rigorous results in that context. The main one deals with one-dimensional scalar conservation laws with nonnegative initial data, for which we prove that the a suitably designed "follow-the-leader" particle scheme approximates entropy solutions in the sense of Kruzkov in the many particle limit. Said result represents a new way to solve scalar conservation laws with bounded and integrable initial data. The same method applies to second order traffic flow models, to nonlocal transport equations, and to the Hughes model for pedestrian movements.
Stefano Spirito, Assistant Professor, Department of Mathematics, University of L’Aquila, Italy
Tuesday, February 11, 2020, 15:00
- 16:00
Building 1, Level 3, Room 3119
Contact Person
In this talk we consider the Cauchy problem for the 2D Euler equations for incompressible inviscid fluids. It is well-known that given a smooth initial datum, the Cauchy problem is  well-posed and in particular the energy is conserved and the vorticity is transported by the flow of the velocity. When we consider weak solutions this might not be the case anymore. We will review some recent results obtained in collaboration with Gianluca Crippa and Gennaro Ciampa where we extend those properties to the case of irregular vorticities. In particular, under low integrability assumptions on the vorticity we show that certain approximations important from a physical and a numerical point of view converge to solutions satisfying those properties.
Dimitrios Mitsotakis, Senior Lecturer, School of Mathematics and Statistic Victoria University of Wellington, New Zealand
Wednesday, February 05, 2020, 16:00
- 17:00
Building 1, Level 4, Room 4214
Contact Person
In this talk we present the derivation of a new Boussinesq-type system to describe the propagation of long waves of small amplitude in a basin with mildly varying bottom topography. We prove the existence and uniqueness of weak solutions for maximal times that do not depend on the amplitude of the waves. We then present the numerical solution of the new system using Galerkin finite element methods and prove the convergence of the semidiscrete solution to the exact solution. The system appears to describe well water waves even in benchmark experiments that involve also general bathymetries.
Prof. Jan Giesselmann, Technical University of Darmstadt, Germany
Tuesday, April 09, 2019, 16:00
- 17:00
B1 L3 Room 3119
Contact Person
In this course we consider multi-phase flows, i.e., flows of one substance which is present as liquid as well as vapor. We focus on models that resolve individual bubbles/droplets and that treat both phases as compressible. We will also discuss incompressible/low Mach limits, since in most applications the liquid is nearly incompressible. Understanding and simulating such small-scale models is important in order to obtain information which can be used in larger scale models for e.g. sprays which play important roles in processes of practical interest as diverse as combustion, chemical engineering, and cloud formation
Prof. Jan Giesselmann, Technical University of Darmstadt, Germany
Sunday, April 07, 2019, 16:00
- 17:00
B1 L3 Room 3119
Contact Person
In this course we consider multi-phase flows, i.e., flows of one substance which is present as liquid as well as vapor. We focus on models that resolve individual bubbles/droplets and that treat both phases as compressible. We will also discuss incompressible/low Mach limits, since in most applications the liquid is nearly incompressible. Understanding and simulating such small-scale models is important in order to obtain information which can be used in larger scale models for e.g. sprays which play important roles in processes of practical interest as diverse as combustion, chemical engineering, and cloud formation
Prof. Jan Giesselmann, Technical University of Darmstadt, Germany
Tuesday, April 02, 2019, 16:00
- 17:00
B1 L3 Room 3119
Contact Person
In this course we consider multi-phase flows, i.e., flows of one substance which is present as liquid as well as vapor. We focus on models that resolve individual bubbles/droplets and that treat both phases as compressible. We will also discuss incompressible/low Mach limits, since in most applications the liquid is nearly incompressible. Understanding and simulating such small-scale models is important in order to obtain information which can be used in larger scale models for e.g. sprays which play important roles in processes of practical interest as diverse as combustion, chemical engineering, and cloud formation
Dr. Suleyman Ulusoy, American University of Ras Al Khaimah, UAE
Wednesday, March 20, 2019, 16:00
- 17:00
Building 1, Level 3, Room 3119
Contact Person
In the first part of the talk we investigate a Keller-Segel model with quorum sensing and a fractional diffusion operator. This model describes the collective cell movement due to chemical sensing with flux limitation for high cell densities and with anomalous media represented by a nonlinear, degenerate fractional diffusion operator. The purpose here is to introduce and prove the existence of a properly defined entropy solution. In the second part of the talk we will analyze an equation that is gradient flow of a functional related to Hardy-Littlewood-Sobolev inequality in whole Euclidean space of higher dimensions.