Prof. Francesca Gardini, Università di Pavia
Tuesday, April 30, 2024, 16:00
- 17:00
Building 1, Level 3, Room 3119
We will discuss the solution of eigenvalue problems associated with partial differential equations (PDE)s that can be written in the generalised form Ax = λMx, where the matrices A and/or M may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilised formulations are used for the numerical approximation of PDEs. With the help of classical numerical examples we will show that the presence of one (or both) parameters can produce unexpected results.
Prof. Edgard Pimentel, Department of Mathematics of the University of Coimbra
Tuesday, March 26, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Hessian-dependent functionals play a pivotal role in a wide latitude of problems in mathematics. Arising in the context of differential geometry and probability theory, this class of problems find applications in the mechanics of deformable media (mostly in elasticity theory) and the modelling of slow viscous fluids. We study such functionals from three distinct perspectives.
Prof. Silvia Bertoluzza
Tuesday, March 05, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5209
We present a theoretical analysis of the Weak Adversarial Networks (WAN) method, recently proposed in [1, 2], as a method for approximating the solution of partial differential equations in high dimensions and tested in the framework of inverse problems. In a very general abstract framework.
Prof. Christof Schmidhuber, ZHAW School of Engineering
Tuesday, February 27, 2024, 16:00
- 17:00
Building 9, Level 2, Room 2322
Analogies between financial markets and critical phenomena have long been observed empirically. So far, no convincing theory has emerged that can explain these empirical observations. Here, we take a step towards such a theory by modeling financial markets as a lattice gas.
Prof. Dr. Victorita Dolean, Mathematics and Computer Science, Scientific Computing, TU Eindhoven
Tuesday, February 06, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Wave propagation and scattering problems are of huge importance in many applications in science and engineering - e.g., in seismic and medical imaging and more generally in acoustics and electromagnetics.
Prof. Zhiming Chen, Academy of mathematics and Systems Science, Chinese Academy of Sciences
Wednesday, January 24, 2024, 14:30
- 16:00
Building 4, Level 5, Room 5220
In this short course, we will introduce some elements in deriving the hp a posteriori error estimate for a high-order unfitted finite element method for elliptic interface problems. The key ingredient is an hp domain inverse estimate, which allows us to prove a sharp lower bound of the hp a posteriori error estimator.
Tuesday, September 12, 2023, 15:00
- 17:00
Building 1, Level 4, Room 4214
Contact Person
This dissertation focuses on the relative energy analysis of two-species fluids composed of charged particles. In particular, it explores several applications of the relative energy method to Euler-Poisson systems, enabling a comprehensive stability analysis of these systems.
Thursday, July 06, 2023, 15:00
- 16:00
Building 1, Level 4, Room 4214
Contact Person
We consider the incompressible axisymmetric Navier-Stokes equations as an idealized model of tornado-like flows. Assuming that an infinite vortex line that interacts with a boundary surface resembles the tornado core, we look for stationary self-similar solutions of the axisymmetric Euler and the axisymmetric Navier-Stokes equations emphasizing the connection among them as the viscosity ν → 0.
Dr. Matthew Schrecker, Departments of Mathematics, University College London
Thursday, March 16, 2023, 16:00
- 17:00
Building 1, Level 4, Room 4102
Contact Person
The Euler-Poisson equations give the classical model of a self-gravitating star under Newtonian gravity. It is widely expected that, in certain regimes, initially smooth initial data may give rise to blow-up solutions, corresponding to the collapse of a star under its own gravity. In this talk, I will present recent work with Yan Guo, Mahir Hadzic and Juhi Jang that demonstrates the existence of smooth, radially symmetric, self-similar blow-up solutions for this problem. I will also comment on the stability of the obtained solution. At the heart of the analysis is the presence of a sonic point, a singularity in the self-similar model that poses serious analytical challenges in the search for a smooth solution.
Prof. Jose Carrillo, Department of Mathematics, University of Oxford, UK
Tuesday, January 10, 2023, 15:30
- 17:00
Building 2, Level 5, Room 5209
Contact Person
This talk will be devoted to an overview of recent results in understanding the bifurcation analysis of nonlinear Fokker-Planck equations arising in a myriad of applications such as consensus formation, optimization, granular media, swarming behavior, opinion dynamics, and financial mathematics to name a few. We will present several results related to localized Cucker-Smale orientation dynamics, McKean-Vlasov equations, and nonlinear diffusion Keller-Segel-type models in several settings. We will show the existence of continuous or discontinuous phase transitions on the torus under suitable assumptions on the Fourier modes of the interaction potential.
Prof. Sir John Ball, Department of Mathematics, Heriot-Watt University, Edinburgh, UK
Monday, December 12, 2022, 12:00
- 13:00
Building 1,Level 4, Room 4102
Contact Person
Liquid crystals are materials whose properties are intermediate between normal fluids and solid crystals, and have widespread use as the working substance for computers, TV, and watch displays. The lecture will introduce these materials and what mathematics can say about them, and in particular, discuss how different theories of liquid crystals describe orientational defects in different ways.
Prof. Manoussos Grillakis, Department of Mathematics, University of Maryland in College Park.
Wednesday, December 07, 2022, 15:30
- 17:00
Building 1, Level 3, Room 3119
A Bose gas at zero temperature is described by a mean field which satisfies the cubic nonlinear Schr¨odinger equation (NLS) otherwise known as the Gross- Pitaevski equation. The mean field describes the evolution of the condensate in an average sense. I will describe a technique that introduces pair correlations in the evolution of the condensate. The resulting approximation tracks the evolu- tion of the condensate in norm provided that the pair wave-function satisfies an interesting system of coupled NLS equations. I will discuss the nonlinear struc- ture of the NLS system as well as a novel approach to the question of global existence of solutions of the system.
Prof. Manoussos Grillakis, Departments of Mathematics, University of Maryland
Sunday, November 27, 2022, 13:00
- 15:00
Building 1, Level 4, Room 4214
Contact Person
The Wave Map system describes the evolution of waves constrained on a (Riemannian)  manifold. For the 2 + 1 dimensional problem, when the target manifold is a sphere, the solution collapses in finite time. The Analysis is due to the pioneering work of Merle, Paphael and Rodnianski. Motivated by their work I will present a somewhat novel approach of the collapsing mechanism which is based on a view of the equations as a nonlinear gauge system. This is joint work with Dan Geba.
Prof. Hailiang Liu, Department of Mathematics, Iowa State University, USA
Wednesday, May 25, 2022, 15:00
- 16:00
B1, L4, R4102,
Contact Person
I shall present some mathematical problems encountered in deep learning models. The results include optimal control of selection dynamics for deep neural networks, and gradient methods adaptive with energy. Some of the computational questions that will be addressed have a more general interest in engineering and sciences.
Monday, November 09, 2020, 17:00
- 19:00
KAUST
Contact Person
In my thesis, I consider the system of thermoelasticity endowed with polyconvex energy. After presenting the equations in their mathematical and physical context, I embed the equations of polyconvex thermoviscoelasticity into an augmented, symmetrizable, hyperbolic system which possesses a convex entropy. This allows to prove many important stability results, such as convergence from thermoviscoelasticity (with Newtonian viscosity and Fourier heat conduction) to smooth solutions of the system of adiabatic thermoelasticity, and convergence from thermoviscoelasticity to smooth solutions of thermoelasticity in the zero-viscosity limit. In addition, I establish a weak-strong uniqueness result in the class of entropy weak solutions and in a suitable class of measure-valued solutions, defined by means of generalized Young measures that describe both oscillatory and concentration effects. Also, I construct a variational scheme for isentropic processes of adiabatic polyconvex thermoelasticity: I establish existence of minimizers which converge to a measure-valued solution that dissipates the total energy, while the scheme converges when the limiting solution is smooth.
Marco Di Francesco, Associate Professor, Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila (Italy)
Tuesday, February 25, 2020, 14:00
- 15:00
Building, Level 3, Room 3119
Approximating the solution to an evolutionary partial differential equation by a set of "moving particles" has several advantages. It validates the use of a continuity equation in an "individuals-based" modeling setting, it provides a link between Lagrangian and Eulerian description, and it defines a "natural" numerical approach to those equations. I will describe recent rigorous results in that context. The main one deals with one-dimensional scalar conservation laws with nonnegative initial data, for which we prove that the a suitably designed "follow-the-leader" particle scheme approximates entropy solutions in the sense of Kruzkov in the many particle limit. Said result represents a new way to solve scalar conservation laws with bounded and integrable initial data. The same method applies to second order traffic flow models, to nonlocal transport equations, and to the Hughes model for pedestrian movements.
Stefano Spirito, Assistant Professor, Department of Mathematics, University of L’Aquila, Italy
Tuesday, February 11, 2020, 15:00
- 16:00
Building 1, Level 3, Room 3119
Contact Person
In this talk we consider the Cauchy problem for the 2D Euler equations for incompressible inviscid fluids. It is well-known that given a smooth initial datum, the Cauchy problem is  well-posed and in particular the energy is conserved and the vorticity is transported by the flow of the velocity. When we consider weak solutions this might not be the case anymore. We will review some recent results obtained in collaboration with Gianluca Crippa and Gennaro Ciampa where we extend those properties to the case of irregular vorticities. In particular, under low integrability assumptions on the vorticity we show that certain approximations important from a physical and a numerical point of view converge to solutions satisfying those properties.
Dimitrios Mitsotakis, Senior Lecturer, School of Mathematics and Statistic Victoria University of Wellington, New Zealand
Wednesday, February 05, 2020, 16:00
- 17:00
Building 1, Level 4, Room 4214
Contact Person
In this talk we present the derivation of a new Boussinesq-type system to describe the propagation of long waves of small amplitude in a basin with mildly varying bottom topography. We prove the existence and uniqueness of weak solutions for maximal times that do not depend on the amplitude of the waves. We then present the numerical solution of the new system using Galerkin finite element methods and prove the convergence of the semidiscrete solution to the exact solution. The system appears to describe well water waves even in benchmark experiments that involve also general bathymetries.
Prof. Jan Giesselmann, Technical University of Darmstadt, Germany
Tuesday, April 09, 2019, 16:00
- 17:00
B1 L3 Room 3119
Contact Person
In this course we consider multi-phase flows, i.e., flows of one substance which is present as liquid as well as vapor. We focus on models that resolve individual bubbles/droplets and that treat both phases as compressible. We will also discuss incompressible/low Mach limits, since in most applications the liquid is nearly incompressible. Understanding and simulating such small-scale models is important in order to obtain information which can be used in larger scale models for e.g. sprays which play important roles in processes of practical interest as diverse as combustion, chemical engineering, and cloud formation
Prof. Jan Giesselmann, Technical University of Darmstadt, Germany
Sunday, April 07, 2019, 16:00
- 17:00
B1 L3 Room 3119
Contact Person
In this course we consider multi-phase flows, i.e., flows of one substance which is present as liquid as well as vapor. We focus on models that resolve individual bubbles/droplets and that treat both phases as compressible. We will also discuss incompressible/low Mach limits, since in most applications the liquid is nearly incompressible. Understanding and simulating such small-scale models is important in order to obtain information which can be used in larger scale models for e.g. sprays which play important roles in processes of practical interest as diverse as combustion, chemical engineering, and cloud formation
Prof. Jan Giesselmann, Technical University of Darmstadt, Germany
Tuesday, April 02, 2019, 16:00
- 17:00
B1 L3 Room 3119
Contact Person
In this course we consider multi-phase flows, i.e., flows of one substance which is present as liquid as well as vapor. We focus on models that resolve individual bubbles/droplets and that treat both phases as compressible. We will also discuss incompressible/low Mach limits, since in most applications the liquid is nearly incompressible. Understanding and simulating such small-scale models is important in order to obtain information which can be used in larger scale models for e.g. sprays which play important roles in processes of practical interest as diverse as combustion, chemical engineering, and cloud formation
Dr. Suleyman Ulusoy, American University of Ras Al Khaimah, UAE
Wednesday, March 20, 2019, 16:00
- 17:00
Building 1, Level 3, Room 3119
Contact Person
In the first part of the talk we investigate a Keller-Segel model with quorum sensing and a fractional diffusion operator. This model describes the collective cell movement due to chemical sensing with flux limitation for high cell densities and with anomalous media represented by a nonlinear, degenerate fractional diffusion operator. The purpose here is to introduce and prove the existence of a properly defined entropy solution. In the second part of the talk we will analyze an equation that is gradient flow of a functional related to Hardy-Littlewood-Sobolev inequality in whole Euclidean space of higher dimensions.