Edmond Chow, Professor and Associate Chair, School of Computational Science and Engineering, Georgia Institute of Technology
Tuesday, June 06, 2023, 16:00
- 17:00
Building 2, Level 5, Room 5220
Coffee Time: 15:30 - 16:00. Kernel matrices can be found in computational physics, chemistry, statistics, and machine learning. Fast algorithms for matrix-vector multiplication for kernel matrices have been developed, and is a subject of continuing interest, including here at KAUST. One also often needs fast algorithms to solve systems of equations involving large kernel matrices. Fast direct methods can sometimes be used, for example, when the physical problem is 2-dimensional. In this talk, we address preconditioning for the iterative solution of kernel matrix systems. The spectrum of a kernel matrix significantly depends on the parameters of the kernel function used to define the kernel matrix, e.g., a length scale.
Monday, April 10, 2023, 12:00
- 13:00
Building 9, Level 2, Room 2325, Hall 2
Contact Person
In this seminar I will present how to create 3D computer graphics and visualization systems for the web, using WebAssmbly and WebGPU language specifications, which are new, bleeding-edge technologies. Previously, accelerated graphics on the web was based on JavaScript libraries, which is still very popular, but they do not offer detailed memory management and code optimization, necessary for systems requiring high memory load and high computational demands. WebAssembly and WebGPU can be compiled from the C++ or Rust code, which also allows the deployment of the same codebase either for web or for the desktop-based applications.
Prof.Oliver Deussen, Visual Computing, University of Konstanz
Monday, February 20, 2023, 12:00
- 13:00
Building 9, Level 2, Room 2325, Hall 2
Contact Person
Inevitably, the projection of most graph structures on two-dimensional screens will create errors and therefore visually wrong impressions. In the past, two types of methods have been developed to minimize projection errors and distribute them in a visually pleasing way. The first group of methods, force-directed layouts, interpret the links of a graph as physical springs, while stress-based methods minimize an energy function, which aims to map graph distances faithfully.
Tobias Isenberg, Senior Research Scientist, Inria
Monday, November 07, 2022, 12:00
- 13:00
Building 9, Level 2, Room 2322, Hall 1
Contact Person
In this talk I will report on various research projects that I carried out with my students to better understand the interaction landscape and will report on lessons we learned. I will focus mostly on AR-based setups with application examples from physical flow visualization, molecular visualization, visualization of particle collisions, biomolecular dynamics in cells, and oceanography. I will show interaction techniques that rely on purely gestural interaction, phones or tablets as input and control devices, and hybrid setups that combine traditional workstations with AR views. I will discuss navigation, data selection, and visualization system control as different interaction tasks. With this overview I aim to provide an understanding of typical challenges in immersive visualization environments and how to address some of these challenges.
Dr. Yunhai Wang, Professor, Computer Science, Shandong University, China
Wednesday, October 02, 2019, 12:00
- 13:00
Building 9, Level 2, Hall 2, Room 2325
Contact Person

Abstract

By providing visual representations

Dr. Ciril Bohak, Postdoctoral Researcher, Faculty of Computer and Information Science, University of Ljubljana, Slovenia
Wednesday, September 25, 2019, 13:00
- 14:00
Building 1, Level 2, VCC Lecture Room
Contact Person
Prof. Xiaoru Yuan, Peking University
Monday, April 15, 2019, 12:00
- 13:00
Building 9, Level 2, Hall 1, Room 2322
Contact Person
In this talk, I will introduce a few recent works on tree visualization. First I will present a  visualization technique for comparing topological structures and node attribute values of multiple trees. I will further introduce GoTree, a declarative grammar supporting the creation of a wide range of tree visualizations. In the application side, visualization and visual analytics on social media  will be introduced. The data from social media can be considered as graphs or trees with complex attributes. A few approaches using map metaphor for social media data visualization will be discussed.