Prof. Francesca Gardini, Università di Pavia
Tuesday, April 30, 2024, 16:00
- 17:00
Building 1, Level 3, Room 3119
We will discuss the solution of eigenvalue problems associated with partial differential equations (PDE)s that can be written in the generalised form Ax = λMx, where the matrices A and/or M may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilised formulations are used for the numerical approximation of PDEs. With the help of classical numerical examples we will show that the presence of one (or both) parameters can produce unexpected results.
Prof. Silvia Bertoluzza
Tuesday, March 05, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5209
We present a theoretical analysis of the Weak Adversarial Networks (WAN) method, recently proposed in [1, 2], as a method for approximating the solution of partial differential equations in high dimensions and tested in the framework of inverse problems. In a very general abstract framework.
Prof. Christof Schmidhuber, ZHAW School of Engineering
Tuesday, February 27, 2024, 16:00
- 17:00
Building 9, Level 2, Room 2322
Analogies between financial markets and critical phenomena have long been observed empirically. So far, no convincing theory has emerged that can explain these empirical observations. Here, we take a step towards such a theory by modeling financial markets as a lattice gas.
Prof. Dr. Victorita Dolean, Mathematics and Computer Science, Scientific Computing, TU Eindhoven
Tuesday, February 06, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Wave propagation and scattering problems are of huge importance in many applications in science and engineering - e.g., in seismic and medical imaging and more generally in acoustics and electromagnetics.
Prof. Zhiming Chen, Academy of mathematics and Systems Science, Chinese Academy of Sciences
Wednesday, January 24, 2024, 14:30
- 16:00
Building 4, Level 5, Room 5220
In this short course, we will introduce some elements in deriving the hp a posteriori error estimate for a high-order unfitted finite element method for elliptic interface problems. The key ingredient is an hp domain inverse estimate, which allows us to prove a sharp lower bound of the hp a posteriori error estimator.
Thursday, November 30, 2023, 14:00
- 15:00
Building 2, Level 5, Room 5209
Contact Person
Light can be controlled through different degrees of freedom. An optical field is described through frequency, amplitude, phase, polarization, and wave-front structure. Many applications have been explored using these degrees of freedom, and some have great importance in our daily life.
Sunday, October 08, 2023, 10:00
- 11:30
Building 2, Level 5, Room 5220
Contact Person
Highly coherent light, although beneficial in specific applications, suffers from the formation of speckles, resulting in poor imaging, lighting, and projection/display quality. Moreover, the long coherence length limits the resolution in interference based sensing. The aim of this dissertation is to design low-coherence surface-emitting lasers to push simultaneous illumination and optical wireless communication (OWC) toward reliable implementation with higher speeds.
Sunday, May 14, 2023, 09:00
- 16:00
Building 18, Level 4, Fellowship Hall
Contact Person
This joint workshop between KAUST and Fudan University covers a variety of topics related to optical communication and devices for visible light communication. Theoretical modeling, device engine/materials investigation and sub-system development will be discussed. These research are essential to eventually realize the goals of connecting all the unconnected, SMART systems and optical internet-of-things. The workshop will be running in hybrid mode, and presenters will be from both KAUST and Fudan University.
Prof. Hugo E. Hernandez Figueroa, University of Campinas (UNICAMP)
Wednesday, July 06, 2022, 10:00
- 11:30
Building 3, Level 5, Room 5209
Contact Person
This talk will be focused on Integrated Photonics technology, which demands strong and robust confinement of light in order to attain the maximum possible integration of photonics devices on a single chip. Keeping this in mind, three applications based on LEMAC’s recent developments will be presented in this talk.
Sunday, March 20, 2022, 13:00
- 15:00
KAUST
Contact Person
This dissertation aims to investigate and address noisy ocean issues and build large-scale underwater sensor networks by optical communication and sensing technology. The dissertation proposes using UWOC and FC&S technology to replace the conventional acoustic communication technology and reduce the noise in the ocean. UWOC helps achieve high-speed wireless communications between sensors, vehicles, and even humans for UIoT. The significant challenges of developing UWOC systems are the complex underwater environment's attenuation, scattering, and turbulence effects. This dissertation studied the turbulence effects on the UWOC system’s performance and addressed the pointing-acquisition-and-tracking issues.
Thursday, November 11, 2021, 15:00
- 16:00
B3, L3, R5220
Contact Person
The paradigm of Internet of Underwater Things (IoUT) is expected to enable various practical applications such as environmental monitoring, underwater exploration, and disaster prevention. Supporting the concept of IoUT requires robust underwater wireless communication infrastructure. Optical wireless communication has the superiority of wide bandwidth, low latency and high data capacity over its counterparts namely, acoustic and radio frequency.
Wednesday, November 10, 2021, 18:00
- 19:00
B3, L5, R5209
Contact Person
Optoelectronics in the deep-ultraviolet (DUV) regime is still a growing research field that requires significant effort to understand the material properties and optimize the device structures to realize highly efficient DUV devices. Of all the wide bandgap materials, AlGaN is perhaps the most studied semiconductor to replace the environmentally hazardous mercury lamps; however, the external quantum efficiency (EQE) of AlGaN based DUV devices is insufficient to replace the existing old-fashioned mercury UV lamps.
Monday, November 08, 2021, 14:00
- 16:00
KAUST
Contact Person
Semiconductor devices based on wide-bandgap materials exhibit a higher breakdown voltage, temperature tolerance, and device stability, and lower energy loss than devices based on low-bandgap materials. Several limitations challenge the use of III-nitrides and transition metal oxides as wide-bandgap materials. This thesis proposes novel methods to surmount these issues. 
Wednesday, March 10, 2021, 12:00
- 14:00
KAUST
Contact Person
The objective of this work is to develop a near-infrared laser device capable of emitting orbital angular momentum (OAM) light. The prototyped device must be suitable for compact, energy-saving optical communication applications. Integrated OAM lasers would revolutionize high capacity data transmission over any telecommunication network environment as OAM light can be guided and transmitted through kilometers of optical fibers as well as propagated in free space and underwater.
Thursday, September 17, 2020, 09:30
- 11:00
KAUST
Contact Person
Gallium nitride (GaN) is a semiconductor material highly regarded for visible light generation since it provides the most efficient platform for compact violet, blue, and green light emitters, and in turn, high-quality and ubiquitous white lighting. Despite this fact, the potential of the GaN platform has not been fully exploited. This potential must enable the precise control in the various properties of light, realizing functions beyond the conventional. Simultaneously, the field of the telecommunications is looking for candidate technologies fit for wireless transmission in the next generations of communication. Visible light communication (VLC) may play a significant role in the future of the last mile of the network by providing both a fast internet connection and a high-quality illumination.
Thursday, April 02, 2020, 16:00
- 18:00
KAUST
Contact Person
This dissertation is devoted to the fabrication and electrical and optical characterization of a new class of III-nitride light-emitter known as superluminescent diode (SLD). SLD works in an amplified spontaneous emission (ASE) regime, and it combines several advantages from both LD and LED, such as droop-free, speckle-free, low-spatial coherence, broader emission, high-optical power, and directional beam. Here, SLDs were fabricated by a focused ion beam by tilting the front facet of the waveguide to suppress the lasing mode. They showed a high-power of 474 mW on c-plane GaN-substrate with a large spectral bandwidth of 6.5 nm at an optical power of 105 mW. To generate SLD-based white light, a YAG-phosphor-plate was integrated, and a CRI of 85.1 and CCT of 3392 K were measured. For the VLC link, SLD showed record high-data rates of 1.45 Gbps and 3.4 Gbps by OOK and DMT modulation schemes, respectively. Additionally, a widely single- and dual-wavelength tunability were designed using SLD-based external cavity (SLD-EC) configuration for a tunable blue laser source.
Wednesday, April 01, 2020, 10:00
- 12:00
KAUST
Contact Person
Underwater wireless optical communication (UWOC) has attracted increasing interest for data transfer in various underwater activities, due to its order-of-magnitude higher bandwidth compared to conventional acoustic and radio-frequency (RF) technologies. Our studies pave the way for eventual applications of UWOC by relieving the strict requirements on PAT using UV-based NLOS. Such modality is much sought-after for implementing robust, secure, and high-speed UWOC links in harsh oceanic environments. This work was first started with the investigation of proper NLOS configurations. Path loss (PL) was chosen as a figure-of-merit for link performance. The effects of NLOS geometries, water turbidity, and transmission wavelength are evaluated by measuring the corresponding PL. The experimental results suggest that NLOS UWOC links are favorable for smaller azimuth angles, stronger water turbidity, and shorter transmission wavelength, as exemplified by the use of 375-nm wavelength. With the understanding of favorable NLOS UWOC configurations, we established a NLOS link consisting of an ultraviolet (UV) laser as the transmitter for enhanced light scattering and high sensitivity photomultiplier tube (PMT) as the receiver. A high data rate of 85 Mbit/s using on-off keying (OOK) in a 30-cm emulated highly turbid harbor water is demonstrated. Besides the underwater communication links, UV-based NLOS is also appealing to be the signal carrier for direct communication across wavy water-air interface. The trial results indicate link stability, which alleviates the issues brought about by the misalignment and mobility in harsh environments, paving the way towards real applications.
Sunday, February 16, 2020, 12:30
- 13:00
Building 9, Level 2, Hall 1, Room 2322
Contact Person
Graduate Seminar Part 2. Fiber-optic distributed acoustic sensor (DAS) and distributed temperature sensor (DTS) are considered important for many applications. It is challenging to design a hybrid DAS-DTS system using the same optical fiber because the operation principles of the two sensors are different. In this talk, we summarize the concept of using the widespread standard multimode fiber (MMF) for simultaneous distributed acoustic and temperature sensing. In particular, we operate the MMF in a quasi-single-mode (QSM) state to simultaneously fulfill the functional requirements of the DAS and DTS. This technique is significant for many industrial applications because it efficiently tackles a long-standing issue in practical implementation. 
Sunday, February 16, 2020, 12:00
- 12:30
Building 9, Level 2, Hall 1, Room 2322
Contact Person
Graduate Seminar Part 1. In this talk, catalyst- and mask-free GaN nanowires ensemble were grown by plasma-assisted molecular beam epitaxy (PA-MBE) under nitrogen-rich condition. Prior to optoelectronic device realization, we conducted fundamental studies including diffusion-induced growth mechanisms on various substrates. On bare fused silica substrate, without any buffer layer, hundreds-of-nanometer scale grains of GaN nanowires were examined by SEM and interfaces were investigated by TEM. Despite the poly-crystalline properties of the coalescent columnar GaN layer, each grain showed the preferential orientation along the c-axis growth direction. To provide conductivity and transparency on amorphous fused silica as a thermally durable substrate, transparent conductive oxide (TCO) layers were deposited by RF magnetron sputtering method on a fused silica glass substrate. Next, for the heterogeneous integration toward solar cell application, we introduced n-GaN nanowires as an electron transport layer (ETL) for methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). n-GaN nanowires showed high electron mobility and UV blocking characteristics with MAPbI3. Moreover, finite-difference time-domain (FDTD) simulation confirmed that the roughened interfaces of GaN nanowire arrays are helpful for photon recycling. These achievements can open a new pathway for the heterogeneous integration of group-III nitride and perovskite semiconductors and substrate-independent epitaxy.
Friday, November 29, 2019, 08:00
- 18:00
KAUST Main Library, Level 3, Room 3118
The fast-developing wide bandgap semiconductor technologies have created hundred-billion-dollar market globally and are crucial for numerous critical areas in Saudi Arabia including water security, lighting, power supply, communication, and nuclear management. This workshop features distinguished speakers from more than 15 leading research institutions and a poster competition. It will serve as a bridge to strengthen the connections of KAUST with Asia for collaboration opportunities in research, development, and commercialization of wide bandgap semiconductor technologies. View the agenda here.
Monday, November 11, 2019, 18:00
- 20:00
Building 3, Level 5, Room 5209
Contact Person
In this dissertation, the design and fabrication of deep-ultraviolet photodetectors, based on gallium oxide and its alloys, through the heterogeneous integration with metallic and other inorganic materials is investigated. The crystallographic properties of grown oxide films formed directly and indirectly on silicon, magnesium oxide, and sapphire are examined, and the challenges that hinder the realization of efficient and reliable deep-ultraviolet photodetectors are elaborated on. I provide an overview of aluminum nitride, gallium oxide, sapphire, and silicon substrates as platforms for deep-ultraviolet optoelectronic devices, in which I elaborate on the challenges associated with using sapphire as a platform for efficient deep-ultraviolet devices and detail advancements in device growth and fabrication on silicon and magnesium oxide substrates.
Sunday, October 20, 2019, 12:00
- 13:00
Building 9, Level 2, Hall 1, Room 2322
Contact Person
Semiconductors are pervasive in consumer electronics and optoelectronics, and the related optical devices are deemed disruptive that Nobel Prize in Physics in 2014 was awarded to the inventors of blue light-emitting diodes (LEDs), which “has enabled bright and energy-saving white light sources”. While AlInGaN-based lasers and LEDs, and silicon-based photodetectors are currently matured, unconventional usage based on the materials has demonstrated their further potential, including solar-hydrogen generation, indoor-horticulture, and high-speed communication.
Dr. Paul Anthony Haigh,Lecturer in Communications, Intelligent Sensing and Communications Group,Newcastle University
Tuesday, September 17, 2019, 13:00
- 14:00
B2 L5 Room 5220
Contact Person

Abstract

Visible light communications (VLC) is a hot topic in internet access networks, developing

Thursday, September 12, 2019, 09:30
- 11:00
Building 3, Level 5, Room 5209
Contact Person
This thesis aims to investigate the microscopic characteristics of the nanowires and expand on the possibility of using transparent amorphous substrate for III-nitride nanowire devices. In this work, we performed material growth, characterization, and device fabrication of III-nitride nanowires grown using molecular beam epitaxy on unconventional substrates including silicon substrates and fused silica substrates. We also investigated the effect of various nucleation layers on the morphology and quality of the nanowires.