Skip to main content
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
Home
Study
Prospective Students
Current Students
Internships
Research
Research Overview
Research Areas
Research Groups
Programs
Applied Mathematics and Computational Sciences
Computer Science
Electrical and Computer Engineering
Statistics
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Students
Alumni
Administrative Staff
News
Events
About
Who We Are
Message from the Dean
Leadership Team
Apply
deep neural networks
On training algorithms for neural networks
Jinchao Xu, Professor, Applied Mathematics and Computational Sciences
Nov 21, 12:00
-
13:00
B9 L2 R2322 H1
Deep learning
deep neural networks
In this talk, I will first give a convergence analysis of gradient descent (GD) method for training neural networks by relating them with finite element method. I will then present some acceleration techniques for GD method and also give some alternative training algorithms
Towards Designing Robust Deep Learning Models for 3D Understanding
Abdullah Hamdi, Ph.D. Student, Electrical and Computer Engineering
Apr 10, 17:00
-
19:00
B3 L5 R5220
deep neural networks
Deep Neural Networks (DNNs) have shown huge success over the years to solve many 2D computer vision tasks driven by massive labeled 2D datasets and advancements in 2D vision models, but less success is witnessed on 3D vision tasks. This dissertation proposes innovative approaches to enhance the robustness of DNNs for 3D understanding and in 3D settings. The research focuses on two main areas: adversarial robustness on 3D data and setups, and the robustness of DNNs to realistic 3D scenarios. Two paradigms for 3D understanding are discussed: representing 3D as a set of 3D points and performing 2D processing of multiple images of the 3D data.