Skip to main content
Computer, Electrical and Mathematical Sciences and Engineering
CEMSE
Computer, Electrical and Mathematical Sciences and Engineering
Home
Study
Prospective Students
Current Students
Internships
Research
Research Overview
Research Areas
Research Groups
Programs
Applied Mathematics and Computational Sciences
Computer Science
Electrical and Computer Engineering
Statistics
People
All People
Faculty
Affiliate Faculty
Instructional Faculty
Research Scientists
Research Staff
Postdoctoral Fellows
Students
Alumni
Administrative Staff
News
Events
About
Who We Are
Message from the Dean
Leadership Team
Apply
Lipschitz additive nonlinear uncertainty
Lipschitz learning and the infinity-Laplacian
Miguel Urbano, Professor, Applied Mathematics and Computational Sciences
Nov 22, 12:00
-
13:00
B9 L2 R2322
Lipschitz additive nonlinear uncertainty
infinity Laplacian
Infinity-harmonic functions have recently found application in Semi-Supervised Learning, in the context of the so-called Lipschitz Learning. With this application in mind, we will discuss the Lipschitz extension problem, its solution via MacShane-Whitney extensions and its several drawbacks, leading to the notion of AMLE (Absolutely Minimising Lipschitz Extension).