Prof. Francesca Gardini, Università di Pavia
Tuesday, April 30, 2024, 16:00
- 17:00
Building 1, Level 3, Room 3119
We will discuss the solution of eigenvalue problems associated with partial differential equations (PDE)s that can be written in the generalised form Ax = λMx, where the matrices A and/or M may depend on a scalar parameter. Parameter dependent matrices occur frequently when stabilised formulations are used for the numerical approximation of PDEs. With the help of classical numerical examples we will show that the presence of one (or both) parameters can produce unexpected results.
Prof. Edgard Pimentel, Department of Mathematics of the University of Coimbra
Tuesday, March 26, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Hessian-dependent functionals play a pivotal role in a wide latitude of problems in mathematics. Arising in the context of differential geometry and probability theory, this class of problems find applications in the mechanics of deformable media (mostly in elasticity theory) and the modelling of slow viscous fluids. We study such functionals from three distinct perspectives.
Prof. Silvia Bertoluzza
Tuesday, March 05, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5209
We present a theoretical analysis of the Weak Adversarial Networks (WAN) method, recently proposed in [1, 2], as a method for approximating the solution of partial differential equations in high dimensions and tested in the framework of inverse problems. In a very general abstract framework.
Prof. Christof Schmidhuber, ZHAW School of Engineering
Tuesday, February 27, 2024, 16:00
- 17:00
Building 9, Level 2, Room 2322
Analogies between financial markets and critical phenomena have long been observed empirically. So far, no convincing theory has emerged that can explain these empirical observations. Here, we take a step towards such a theory by modeling financial markets as a lattice gas.
Prof. Dr. Victorita Dolean, Mathematics and Computer Science, Scientific Computing, TU Eindhoven
Tuesday, February 06, 2024, 16:00
- 17:00
Building 2, Level 5, Room 5220
Wave propagation and scattering problems are of huge importance in many applications in science and engineering - e.g., in seismic and medical imaging and more generally in acoustics and electromagnetics.
Prof. Zhiming Chen, Academy of mathematics and Systems Science, Chinese Academy of Sciences
Wednesday, January 24, 2024, 14:30
- 16:00
Building 4, Level 5, Room 5220
In this short course, we will introduce some elements in deriving the hp a posteriori error estimate for a high-order unfitted finite element method for elliptic interface problems. The key ingredient is an hp domain inverse estimate, which allows us to prove a sharp lower bound of the hp a posteriori error estimator.
Thursday, July 20, 2023, 13:00
- 17:00
Building 2, Level 5, Room 5220
Contact Person
The dissertation focuses on developing novel computational methods to improve the diagnosis of patients with rare or complex diseases. By systematically relating human phenotypes resulting from gene function loss or change to gene functions and anatomical/cellular locations, the candidate aims to enhance the prediction and prioritization of disease-causing variants. These methods, leveraging graph-based machine learning and biomedical ontologies, demonstrate significant improvements over existing approaches. The presentation will include a systematic evaluation of the methods, demonstrating their ability to compensate for incomplete data and their applications in biomedicine and clinical decision-making. This research contributes to more effective methods for predicting disease-causing variants and advancing precision medicine, offering promising prospects for improved diagnostics and patient care.
Thursday, July 20, 2023, 09:00
- 10:00
Building 3, Level 5, Room 5209.
Contact Person
Ontologies are widely used in various domains, including biomedical research, to structure information, represent knowledge, and analyze data. Combining ontologies from different domains is crucial for systematic data analysis and comparison of similar domains. This requires ontology composition, integration, and alignment, which involve creating new classes by reusing classes from different domains, aggregating types of ontologies within the same domain, and finding correspondences between ontologies within the same or similar domain.
Prof. Jesualdo Tomas Fernandez Breis, University of Murcia, Spain
Wednesday, July 19, 2023, 11:30
- 13:00
Building 2, Level 5, Room 5220
Contact Person
Knowledge about transcription factor binding and regulation, target genes, cis-regulatory modules and topologically associating domains is not only defined by functional associations like biological processes or diseases, but also has a determinative genome location aspect.
Dr. Michel Dumontier, Distinguished Professor, Data Science
Thursday, March 16, 2023, 12:00
- 13:00
Building 2, Level 5, Room 5220
Contact Person

Abstract

The increased availability of biomedical data, particularly in the public domain, offers

Bio-Hackathon MENA 2023
Tuesday, February 07, 2023, 08:00
- 17:00
KAUST Hotel
Contact Person
Bioinformatics experts, Don’t miss the opportunity to collaborate with researchers and field professionals in the BioHackathonMENA2023 event. BioHackathon events involve a large number of people that meet on-site to discuss ideas and implement projects in a collaborative manner during intensive coding sessions.
Prof. Ricardo Henao, Associate Professor, BESE Division, KAUST
Wednesday, February 01, 2023, 12:00
- 13:00
Building 3, Level 5, Room 5220
Contact Person
We propose a structured latent ODE model that explicitly captures system input variations within its latent representation. Building on a static latent variable specification, our model learns (independent) stochastic factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space. This approach provides actionable modeling through the controlled generation of time-series data for novel input combinations (or perturbations). Additionally, we propose a flexible approach for quantifying uncertainties, leveraging a quantile regression formulation.
Dr. Danesh Moradigaravand, Infectious Disease Epidemiology lab, BESE, KAUST
Monday, December 05, 2022, 12:00
- 13:00
Building 3, Level 5, Room 5209
Contact Person
In this talk, I will first present how the application of phylogenetic and phylodynamic methods to whole genome sequencing data of multidrug resistant bacterial pathogens provided an in-depth understanding of the epidemiology and evolution of these strains on epidemiological time scales. I will then discuss the characterization of the genomic repertoire of bacterial traits using a combination of machine learning, whole genome sequencing and large-scale phenotypic assays. I will then present the leverage of predictive modelling to predict bacterial features, e.g. antimicrobial resistance, growth, and horizontal gene transfer, from genomic biomarkers. I will finally discuss how large-scale phenotypic assays enabled us to identity genes underlying morphogenesis and biofilm formation.
Monday, November 28, 2022, 12:00
- 13:00
Building 2, Level 5, Room 5209
Contact Person
Biological systems are distinguished by their enormous complexity and variability. That is why mathematical modelling and computational simulation of those systems is very difficult, in particular thinking of detailed models which are based on first principles. The difficulties start with geometric modelling which needs to extract basic structures from highly complex and variable phenotypes, on the other hand also has to take the statistic variability into account.
Sakhaa Al-Saedi, PhD Student; Azza Althagafi, PhD Student
Tuesday, April 12, 2022, 13:00
- 14:00
KAUST
Sakhaa Al-Saedi: We conduct a systematic genetic analysis of risk variants related to increasing the severity of COVID-19. It leads to a better understanding of its genetic basis and identifies the host genes to be targeted to tackle the COVID-19 pandemic and reduce its death toll. Azza Althagafi: We developed DeepSVP, a computational method to prioritize structural variants involved in genetic diseases by combining genomic and gene functions information. DeepSVP significantly improves the success rate of finding causative variants in several benchmarks and can identify novel pathogenic structural variants in consanguineous families.
Monday, April 06, 2020, 19:30
- 21:30
KAUST
Contact Person
We developed and expanded novel methods for representation learning, predicting protein functions and their loss of function phenotypes. We use deep neural network algorithm and combine them with symbolic inference into neural-symbolic algorithms. Our work significantly improves previously developed methods for predicting protein functions through methodological advances in machine learning, incorporation of broader data types that may be predictive of functions, and improved systems for neural-symbolic integration. The methods we developed are generic and can be applied to other domains in which similar types of structured and unstructured information exist. In future, our methods can be applied to prediction of protein function for metagenomic samples in order to evaluate the potential for discovery of novel proteins of industrial value.  Also our methods can be applied to the prediction of loss of function phenotypes in human genetics and incorporate the results in a variant prioritization tool that can be applied to diagnose patients with Mendelian disorders.
Tuesday, March 03, 2020, 10:00
- 11:30
Building 9, Level 2, Hall 2, Room 2325
In my research I aim to understand how formalized knowledge bases can be used to systematically structure and integrate biological knowledge, and how to utilize these formalized knowledge bases as background knowledge to improve scientific discovery in biology and biomedicine.  To achieve these aims, I develop methods for representing, integrating, and analyzing data and knowledge with the specific aim to make the combination of data and formalized knowledge accessible to data analytics and machine learning in bioinformatics. Biomedicine, and life sciences in general, are an ideal domain for knowledge-driven data analysis methods due to the large number of formal knowledge bases that have been developed to capture the broad, diverse, and heterogeneous data and knowledge.
Monday, January 20, 2020, 08:00
- 17:00
Building 19, Level 2, Hall 1
Computational Bioscience Research Center at King Abdullah University of Science and Technology is pleased to announce the KAUST Research Conference on Digital Health 2020.
Dr. Michel Dumontier, Distinguished Professor of Data Science at Maastricht University, The Netherlands
Monday, November 04, 2019, 12:00
- 13:00
Building 9, Level 2, Hall 1, Room 2322
Contact Person
In this talk, I will discuss our work to create computational standards, platforms, and methods to wrangle knowledge into simple, but effective representations based on semantic web technologies that are maximally FAIR - Findable, Accessible, Interoperable, and Reuseable - and to further use these for biomedical knowledge discovery. But only with additional crucial developments will this emerging Internet of FAIR data and services enable automated scientific discovery on a global scale.
Monday, September 23, 2019, 09:00
- 16:00
Graz, Austria
Contact Person
KAUST Assistant professor Robert Hoehndorf will be giving a keynote presentation at the 4th International Workshop on Ontology Modularity, and Evolution @ JOWO 2019, Graz, Austria.
Professor Dietrich Rebholz-Schuhmann, Universität zu Köln
Monday, February 04, 2019, 13:00
- 14:00
B19, Level 3, Hall 2
Contact Person
Prof. Rebholz-Schuhmann has long-term experience in semantics driven data analytics research, as well in life sciences as in other domains.