2024
Hughes, E.T., Shang, C., Selvidge, J., Jung, D., Wan, Y., Herrick, R.W., Bowers, J.E. & Mukherjee, K., 2024. Gradual degradation in InAs quantum dot lasers on Si and GaAs. Nanoscale.
Dong, B., Wan, Y., Chow, W.W., Shang, C., Prokoshin, A., Koscica, R., Wang, H. & Bowers, J.E., 2024. Turnkey locking of quantum-dot lasers directly grown on Si. arXiv preprint arXiv:2401.01560.
DOI
abs/2401.015602023
Ng, T.K., Rjeb, A., Cox, M.A., Cordette, S.J., Wan, Y., Ashry, I., Gan, Q., Fratalocchi, A., Ohkawa, K. & Ooi, B.S. Globalization in Photonics Research and Development. (2023). IEEE Photonics Journal. doi: 10.1109/JPHOT.2023.3337312
Alkhazraji, E., Chow, W. W., Grillot, F., Bowers, J. E., Madaras, S. E., Gehl, M., Skogen, E., & Wan, Y. (2023). Engineering Design of Integrated III-V/SiN Quantum-well and Quantum-dot Lasers. CLEO 2023. https://doi.org/10.1364/cleo_si.2023.stu3p.4
Shang, C., Hughes, E.T., Begley, M.R., Koscica, R., Fouchier, M., Feng, K., He, W., Wan, Y., Leake, G., Ludewig, P. & Bowers, J.E. Design Rules for Addressing Material Asymmetry Induced by Templated Epitaxy for Integrated Heteroepitaxial On‐Chip Light Sources. (2023). Advanced Functional Materials, 33(45), p.2304645. doi: 10.1002/adfm.202304645.
Alkhazraji, E., Chow, W. W., Grillot, F., Bowers, J. E., & Wan, Y. (2023). Linewidth narrowing in self-injection-locked on-chip lasers. Light: Science & Applications, 12(1). https://doi.org/10.1038/s41377-023-01172-9
Alkhazraji, E., Chow, W.W., Grillot, F., Bowers, J.E., Madaras, S.E., Gehl, M., Skogen, E. & Wan, Y. June. Design optimization of on-chip III-V/SiN quantum well/dot lasers. (2023). In The European Conference on Lasers and Electro-Optics (p. cb_5_6). Optica Publishing Group.
Meneghini, M., Buffolo, M., Zenari, M., De Santi, C., Herrick, R.W., Shang, C., Wan, Y., Feng, K., Hughes, E., Bowers, J. & Meneghesso, G. May. Degradation Processes and Aging in Quantum Dot Lasers on Silicon. (2023). In CLEO: Science and Innovations (pp. SM2J-1). Optica Publishing Group.
Shang, C., Feng, K., Hughes, E.T., Clark, A., Debnath, M., Koscica, R., Leake, G., Herman, J., Harame, D., Ludewig, P. & Wan, Y. May. Scalable on-chip lasers grown on 300 mm Si wafers. (2023). In 2023 Conference on Lasers and Electro-Optics (CLEO) (pp. 1-2). IEEE.
Koscica, R., Wan, Y., He, W., Kennedy, M. J., & Bowers, J. E. (2023). Heterogeneous integration of a III–V quantum dot laser on high thermal conductivity silicon carbide. Optics Letters, 48(10), 2539. https://doi.org/10.1364/ol.486089
Handle
Buffolo, M., Zenari, M., De Santi, C., Shang, C., Hughes, E., Wan, Y., Bowers, J.E., Herrick, R.W., Meneghesso, G., Zanoni, E. & Meneghini, M. Improving the reliability of InAs quantum-dot laser diodes for silicon photonics: the role of trapping layers and misfit-dislocation density. (2023). In Novel In-Plane Semiconductor Lasers XXII (Vol. 12440, p. 1244002). SPIE.
Buffolo, M., Zenari, M., De Santi, C., Shang, C., Hughes, E., Wan Y., Bowers, J., Herrick, R. W., Meneghesso, G., Zanoni, E., Meneghini, M. (2023). mproving the reliability of InAs quantum-dot laser diodes for silicon photonics: the role of trapping layers and misfit-dislocation density. Novel In-Plane Semiconductor Lasers XXII, 1244002. https://doi.org/10.1117/12.2652046
Zhou, Z., Ou, X., Fang, Y., Alkhazraji, E., Xu, R., Wan, Y., & Bowers, J. E. (2023). Prospects and applications of on-chip lasers. eLight, 3(1). https://doi.org/10.1186/s43593-022-00027-x
Handle
2022
Guo, C., & Wan, Y. (2022). Light People: Prof. John Bowers spoke about silicon photonics. Light: Science & Applications, 11(1). https://doi.org/10.1038/s41377-022-01040-y
Handle
Shang, C., Feng, K., Hughes, E. T., Clark, A., Debnath, M., Koscica, R., Leake, G., Herman, J., Harame, D., Ludewig, P., Wan, Y., & Bowers, J. E. (2022). Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light: Science & Applications, 11(1). https://doi.org/10.1038/s41377-022-00982-7
Zenari, M., Buffolo, M., De Santi, C., Shang, C., Hughes, E., Wan, Y., Herrick, R. W., Meneghesso, G., Zanoni, E., Bowers, J., & Meneghini, M. (2022). Impact of a defect trapping layer on the reliability of 1.3 μm quantum dot laser diodes grown on silicon. Microelectronics Reliability, 114714. https://doi.org/10.1016/j.microrel.2022.114714
Bowers, J. E., Gossard, A., Jung, D., Norman, J., Shang, C., & Wan, Y. (2022). Monolithic integrated quantum dot photonic integrated circuits. US Patent US11435524B2.
Shi, Y., Zhang, Y., Wan, Y., Yu, Y., Zhang, Y., Hu, X., Xiao, X., Xu, H., Zhang, L., & Pan, B. (2022). Silicon photonics for high-capacity data communications. Photonics Research, 10(9), A106. https://doi.org/10.1364/prj.456772
Handle
Wan, Y., Xiang, C., Koscica, R., Kennedy, M., Huang, D., Gossard, A. C., & Bowers, J. E. (2022). 1.3 µm High Speed Heterogeneous Quantum-Dot Lasers on Si. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2022.sm2p.1
Chow, W. W., Wan, Y., Bowers, J. E., & Grillot, F. (2022). Analysis of the Spontaneous Emission Limited Linewidth of an Integrated III–V/SiN Laser. Laser & Photonics Reviews, 16(6), 2100620. Portico. https://doi.org/10.1002/lpor.202100620
2021
Koscica, R., Wan, Y., Shang, C., Gossard, A. C., & Bowers, J. E. (2021). 1.3 μm High Performance Regrown Distributed Feedback Lasers Epitaxially Grown on Si. 2021 IEEE Photonics Conference (IPC). https://doi.org/10.1109/ipc48725.2021.9593034
Xiang, C., Jin, W., Huang, D., Tran, M. A., Guo, J., Wan, Y., Xie, W., Kurczveil, G., Netherton, A. M., Liang, D., Rong, H., & Bowers, J. E. (2022). High-Performance Silicon Photonics Using Heterogeneous Integration. IEEE Journal of Selected Topics in Quantum Electronics, 28(3), 1–15. https://doi.org/10.1109/jstqe.2021.3126124
Wan, Y., Norman, J., Tong, Y., Kennedy, M. J., Shang, C., Selvidge, J., Tsang, H. K., Gossard, A. C., & Bowers, J. E. (2021). 1.3 μm regrown quantum-dot distributed feedback lasers on (001) Si: a pathway to scale towards 1 Tbit/s. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2021.sm1h.6
Shang, C., Wan, Y., Selvidge, J., Hughes, E., Herrick, R., Mukherjee, K., Duan, J., Grillot, F., Chow, W. W., & Bowers, J. E. (2021). Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits. ACS Photonics, 8(9), 2555–2566. https://doi.org/10.1021/acsphotonics.1c00707
Wan, Y., Xiang, C., Guo, J., Koscica, R., Kennedy, M., Selvidge, J., Zhang, Z., Chang, L., Xie, W., Huang, D., Gossard, A. C., & Bowers, J. E. (2021). High Speed Evanescent Quantum‐Dot Lasers on Si. Laser & Photonics Reviews, 15(8), 2100057. Portico. https://doi.org/10.1002/lpor.202100057
Shang, C., Hughes, E., Wan, Y., Dumont, M., Koscica, R., Selvidge, J., Herrick, R., Gossard, A. C., Mukherjee, K., & Bowers, J. E. (2021). High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica, 8(5), 749. https://doi.org/10.1364/optica.423360
Shang, C., Hughes, E., Wan, Y., Dumont, M., Koscica, R., Selvidge. J., Herrick., R., Jung, Gossard, A. C., Mukherjee, K., Bowers, J. E., "High temperature reliable epitaxially grown quantum dot lasers on (001) Si with record performance," 2021 Conference on Lasers and Electro-Optics (CLEO), 2021, pp. 1-2. https://ieeexplore.ieee.org/abstract/document/9572850
Wan, Y., Norman, J., Liu, S., Liu, A., & Bowers, J. E. (2021). Quantum Dot Lasers and Amplifiers on Silicon: Recent Advances and Future Developments. IEEE Nanotechnology Magazine, 15(2), 8–22. https://doi.org/10.1109/mnano.2020.3048094
Chow, W. W., Wan, Y., Bowers, J. E., & Grillot, F. (2021). Analysis of the spontaneous emission limited linewidth of an integrated III-V/SiN laser (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2112.11403
2020
Wan, Y., Zhang, S., Norman, J., Kennedy, M., He, W., Tong, Y., Shang, C., He, J.-J., Tsang, H. K., Gossard, A. C., & Bowers, J. E. (2020). 1.3 µm tunable quantum dot lasers. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2020.sf2e.1
Chen, B., Wan, Y., Xie, Z., Huang, J., Shang, C., Norman, J., Li, Q., Lau, K. M., Gossard, A. C., & Bowers, J. E. (2020). Quantum Dot Avalanche Photodetector on Si Substrate. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2020.sm3r.2
Wan, Y., Norman, J. C., Tong, Y., Kennedy, M. J., He, W., Selvidge, J., Shang, C., Dumont, M., Malik, A., Tsang, H. K., Gossard, A. C., & Bowers, J. E. (2020). 1.3 µm Quantum Dot‐Distributed Feedback Lasers Directly Grown on (001) Si. Laser & Photonics Reviews, 14(7), 2000037. Portico. https://doi.org/10.1002/lpor.202000037
Liu, S., Wu, X., Norman, J. C., Jung, D., Dumont, M., Shang, C., Wan, Y., Kennedy, M. J., Dong, B., Auth, D., Breuer, S., Grillot, F., Chow, W. W., Gossard, A. C., & Bowers, J. E. (2020). High-performance mode-locked lasers on silicon. Physics and Simulation of Optoelectronic Devices XXVIII. https://doi.org/10.1117/12.2552224
Norman, J., Liu, S., Wan, Y., Zhang, Z., Shang, C., Selvidge, J. G., Dumont, M., Kennedy, M. J., Jung, D., Duan, J., Huang, H., Herrick, R. W., Grillot, F., Gossard, A. C., & Bowers, J. E. (2020). Epitaxial integration of high-performance quantum-dot lasers on silicon. Silicon Photonics XV. https://doi.org/10.1117/12.2542912
Wan, Y., Zhang, S., Norman, J. C., Kennedy, M., He, W., Tong, Y., Shang, C., He, J., Tsang, H. K., Gossard, A. C., & Bowers, J. E. (2020). Directly Modulated Single‐Mode Tunable Quantum Dot Lasers at 1.3 µm. Laser & Photonics Reviews, 14(3), 1900348. Portico. https://doi.org/10.1002/lpor.201900348
Chen, B., Wan, Y., Xie, Z., Huang, J., Zhang, N., Shang, C., Norman, J., Li, Q., Tong, Y., Lau, K. M., Gossard, A. C., & Bowers, J. E. (2020). Low Dark Current High Gain InAs Quantum Dot Avalanche Photodiodes Monolithically Grown on Si. ACS Photonics, 7(2), 528–533. https://doi.org/10.1021/acsphotonics.9b01709
Wan, Y., Shang, C., Norman, J., Shi, B., Li, Q., Collins, N., Dumont, M., Lau, K. M., Gossard, A. C., & Bowers, J. E. (2020). Low Threshold Quantum Dot Lasers Directly Grown on Unpatterned Quasi-Nominal (001) Si. IEEE Journal of Selected Topics in Quantum Electronics, 26(2), 1–9. https://doi.org/10.1109/jstqe.2020.2964381
2019
Jung, D., Norman, J., Liu, S., Shang, C., Wan, Y., Gossard, A., & Bowers, J. (2019). Growth of Broadband Gain Quantum Dot Mode-Locked Laser on Si with Varied InGaAs Well Thickness. 2019 International Conference on Optical MEMS and Nanophotonics (OMN). https://doi.org/10.1109/omn.2019.8925208
Dong, B., Duan, J., Shang, C., Huang, H., Sawadogo, A. B., Jung, D., Wan, Y., Bowers, J. E., & Grillot, F. (2019). Influence of the polarization anisotropy on the linewidth enhancement factor and reflection sensitivity of 1.55-μm InP-based InAs quantum dash lasers. Applied Physics Letters, 115(9), 091101. https://doi.org/10.1063/1.5110768
Shang, C., Gossard, A. C., Bowers, J. E., Wan, Y., Norman, J. C., Collins, N., MacFarlane, I., Dumont, M., Liu, S., Li, Q., & Lau, K. M. (2019). Low-Threshold Epitaxially Grown 1.3-μm InAs Quantum Dot Lasers on Patterned (001) Si. IEEE Journal of Selected Topics in Quantum Electronics, 25(6), 1–7. https://doi.org/10.1109/jstqe.2019.2927581
Wan, Y., Norman, J., & Bowers, J. (2019). Quantum dot microcavity lasers on silicon substrates. Semiconductors and Semimetals, 305–354. https://doi.org/10.1016/bs.semsem.2019.05.002
Jung, D., Herrick, R., Norman, J., Wan, Y., Gossard, A. C., & Bowers, J. E. (2018). High performance and reliable 1.3 μm InAs quantum dot lasers epitaxially grown on Si. 2018 23rd Opto-Electronics and Communications Conference (OECC). https://doi.org/10.1109/oecc.2018.8730014
Wan, Y., Jung, D., Shang, C., Collins, N., MacFarlane, I., Norman, J., Dumont, M., Gossard, A. C., & Bowers, J. E. (2019). Low threshold 1.55 µm Quantum dash microring lasers. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2019.stu4j.3
Shang, C., Wan, Y., Norman, J., Jung, D., Li, Q., Lau, K. M., Gossard, A. C., & Bowers, J. E. (2019). Triple reduction of threshold current for 1.3 μm InAs quantum dot lasers on patterned, on-axis (001) Si. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2019.stu3n.1
Huang, J., Wan, Y., Jung, D., Norman, J., Shang, C., Li, Q., Lau, K. M., Gossard, A. C., Bowers, J. E., & Chen, B. (2019). Defect Characterization of InAs/InGaAs Quantum Dot p-i-n Photodetector Grown on GaAs-on-V-Grooved-Si Substrate. ACS Photonics, 6(5), 1100–1105. https://doi.org/10.1021/acsphotonics.8b01707
Bowers, J. E., Huang, D., Jung, D., Norman, J., Tran, M., Wan, Y., Xie, W., Zhang, Z., "Realities and Challenges of III-V/Si Integration Technologies," 2019 Optical Fiber Communications Conference and Exhibition (OFC), 2019, pp. 1-3. https://ieeexplore.ieee.org/abstract/document/8696376
Wan, Y., Jung, D., Inoue, D., Norman, J. C., Shang, C., Cossard, A. C., & Bowers, J. E. (2018). On-Chip Detection from Directly Modulated Quantum Dot Microring Lasers on Si. 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). https://doi.org/10.23919/piers.2018.8598216
Norman, J. C., Jung, D., Zhang, Z., Wan, Y., Liu, S., Shang, C., Herrick, R. W., Chow, W. W., Gossard, A. C., & Bowers, J. E. (2019). A Review of High-Performance Quantum Dot Lasers on Silicon. IEEE Journal of Quantum Electronics, 55(2), 1–11. https://doi.org/10.1109/jqe.2019.2901508
2018
Jung, D., Norman, J., Wan, Y., Liu, S., Herrick, R., Selvidge, J., Mukherjee, K., Gossard, A. C., & Bowers, J. E. (2018). Recent Advances in InAs Quantum Dot Lasers Grown on On‐Axis (001) Silicon by Molecular Beam Epitaxy. Physica Status Solidi (a), 216(1), 1800602. Portico. https://doi.org/10.1002/pssa.201800602
Wan, Y., Jung, D., Shang, C., Collins, N., MacFarlane, I., Norman, J., Dumont, M., Gossard, A. C., & Bowers, J. E. (2018). Low-Threshold Continuous-Wave Operation of Electrically Pumped 1.55 μm InAs Quantum Dash Microring Lasers. ACS Photonics, 6(2), 279–285. https://doi.org/10.1021/acsphotonics.8b01341
Inoue, D., Jung, D., Norman, J., Wan, Y., Nishiyama, N., Arai, S., Gossard, A. C., & Bowers, J. E. (2018). NRZ and PAM-4 Direct Modulation of <tex>$1.3\ \mu\mathrm{m}$</tex> Quantum Dot Lasers Grown Directly on On-Axis (001) Si. 2018 European Conference on Optical Communication (ECOC). https://doi.org/10.1109/ecoc.2018.8535436
Jung, D., Norman, J., Wan, Y., Liu, S., Herrick, R., Gossard, A., & Bowers, J. (2018). InAs Quantum dot Lasers Epitaxially Grown on On-Axis (001) Silicon. 2018 IEEE 15th International Conference on Group IV Photonics (GFP). https://doi.org/10.1109/group4.2018.8478688
Norman, J., Jung, D., Gossard, A. C., Bowers, J. E., Zhang, Z., Wan, Y., Kennedy, M., Torres, A., & Herrick, R. (2018). High performance quantum dot lasers epitaxially integrated on Si. Quantum Communications and Quantum Imaging XVI. https://doi.org/10.1117/12.2319627
Inoue, D., Wan, Y., Jung, D., Norman, J., Shang, C., Nishiyama, N., Arai, S., Gossard, A. C., & Bowers, J. E. (2018). Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si. Applied Physics Letters, 113(9), 093506. https://doi.org/10.1063/1.5041908
Wan, Y., Inoue, D., Jung, D., Norman, J. C., Shang, C., Gossard, A. C., & Bowers, J. E. (2018). Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability. Photonics Research, 6(8), 776. https://doi.org/10.1364/prj.6.000776
Jung, D., Herrick, R., Norman, J., Jan, C., Caranto, N., Torres, A., Wan, Y., Gossard, A. C., Bowers, J. E., "Highly Improved Reliability of Low Threshold 1.3 μm III/V Quantum Dot Laser Epitaxially Grown on On-axis Si," 2018 Conference on Lasers and Electro-Optics (CLEO), 2018, pp. 1-2. https://ieeexplore.ieee.org/abstract/document/8428087
Shang, C., Wan, Y., Jung, D., Norman, J., Kennedy, M., Liang, D., Zhang, C., Gossard, A. C., Bowers, J. E., "Quantum dot micro-lasers integrated with photodetectors and optical amplifiers on (001) Si via waveguide coupling," 2018 Conference on Lasers and Electro-Optics (CLEO), 2018, pp. 1-2. https://ieeexplore.ieee.org/abstract/document/8427631
Bowers, J. E., Gossard, A., Jung, D., Norman, J., & Wan, Y. (2018). Quantum Dot Photonic Integrated Circuits on Silicon. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2018.sw3b.1
Wan, Y., Jung, D., Norman, J., Feng, K., Dagli, A., Gossard, A. C., & Bowers, J. E. (2018). Quadruple reduction of threshold current density for micro-ring quantum dot lasers epitaxially grown on (001) Si. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2018.sw3q.3
Zhu, S., Shi, B., Li, Q., Wan, Y., Hu, E. L., & Lau, K. M. (2017). Room Temperature 1.55 µm Lasing of Sub-wavelength Quantum-dot Lasers Epitaxially Grown on (001) Silicon. 2017 European Conference on Optical Communication (ECOC). https://doi.org/10.1109/ecoc.2017.8345911
Norman, J. C., Jung, D., Wan, Y., & Bowers, J. E. (2018). Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 3(3), 030901. https://doi.org/10.1063/1.5021345
Inoue, D., Jung, D., Norman, J., Wan, Y., Nishiyama, N., Arai, S., Gossard, A. C., & Bowers, J. E. (2018). Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. Optics Express, 26(6), 7022. https://doi.org/10.1364/oe.26.007022
2017
Jung, D., Zhang, Z., Norman, J., Herrick, R., Kennedy, M. J., Patel, P., Turnlund, K., Jan, C., Wan, Y., Gossard, A. C., & Bowers, J. E. (2017). Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency. ACS Photonics, 5(3), 1094–1100. https://doi.org/10.1021/acsphotonics.7b01387
Zhu, S., Shi, B., Li, Q., Wan, Y., & Lau, K. M. (2017). Parametric study of high-performance 1.55 μm InAs quantum dot microdisk lasers on Si. Optics Express, 25(25), 31281. https://doi.org/10.1364/oe.25.031281
Wan, Y., Zhang, Z., Chao, R., Norman, J., Jung, D., Shang, C., Li, Q., Kennedy, M., Liang, D., Zhang, C., Shi, J.-W., Gossard, A. C., Lau, K. M., & Bowers, J. E. (2017). Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Optics Express, 25(22), 27715. https://doi.org/10.1364/oe.25.027715
Wan, Y., Jung, D., Norman, J., Shang, C., MacFarlane, I., Li, Q., Kennedy, M. J., Gossard, A. C., Lau, K. M., & Bowers, J. E. (2017). O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. Optics Express, 25(22), 26853. https://doi.org/10.1364/oe.25.026853
Jung, D., Norman, J., Kennedy, M. J., Shang, C., Shin, B., Wan, Y., Gossard, A. C., & Bowers, J. E. (2017). High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si. Applied Physics Letters, 111(12), 122107. https://doi.org/10.1063/1.4993226
Wan, Y., Norman, J., Li, Q., Kennedy, M. J., Liang, D., Zhang, C., Huang, D., Zhang, Z., Liu, A. Y., Torres, A., Jung, D., Gossard, A. C., Hu, E. L., Lau, K. M., & Bowers, J. E. (2017). 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica, 4(8), 940. https://doi.org/10.1364/optica.4.000940
B. Shi, S. Zhu, Q. Li, Y. Wan, E. L. Hu and K. M. Lau, "InAs/InAlGaAs quantum dot-on-silicon microdisk lasers operating at 1.55 μm," 2017 Conference on Lasers and Electro-Optics (CLEO), 2017, pp. 1-2. https://ieeexplore.ieee.org/abstract/document/8084463
Wan, Y., Norman, J., Li, Q., Kennedy, M., Liang, D., Zhang, C., Huang, D., Liu, A., Torres, A., Jung, D., Gossard, A. C., E., Hu., Lau, K. M., Bowers, J. E., "Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si," 2017 Conference on Lasers and Electro-Optics (CLEO), 2017, pp. 1-2. https://ieeexplore.ieee.org/abstract/document/8083603
Wan, Y., Li, Q., Liu, A., Geng, Y., Norman, J., Torres, A., Chow, W. W., Gossard, A. C., Bowers, J. E., E., Hu., Lau, K. M., "Quantum dot lasers grown on (001) Si substrate for integration with amorphous Si waveguides," 2017 Optical Fiber Communications Conference and Exhibition (OFC), 2017, pp. 1-3. https://ieeexplore.ieee.org/abstract/document/7937070
Shi, B., Zhu, S., Li, Q., Tang, C. W., Wan, Y., Hu, E. L., & Lau, K. M. (2017). 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Applied Physics Letters, 110(12), 121109. https://doi.org/10.1063/1.4979120
Lau, K. M., Shi, B., Wan, Y., Liu, A. Y., Li, Q., Zhu, S., Gossard, A. C., Bowers, J. E., & Hu, E. L. (2017). InAs quantum dot micro-disk lasers grown on (001) Si emitting at communication wavelengths. Novel In-Plane Semiconductor Lasers XVI. https://doi.org/10.1117/12.2256481
Norman, J., Kennedy, M. J., Selvidge, J., Li, Q., Wan, Y., Liu, A. Y., Callahan, P. G., Echlin, M. P., Pollock, T. M., Lau, K. M., Gossard, A. C., & Bowers, J. E. (2017). Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Optics Express, 25(4), 3927. https://doi.org/10.1364/oe.25.003927
Zhu, S., Shi, B., Wan, Y., Hu, E. L., & Lau, K. M. (2017). 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks. Optics Letters, 42(4), 679. https://doi.org/10.1364/ol.42.000679
Shi, B., Zhu, S., Li, Q., Wan, Y., Hu, E. L., & Lau, K. M. (2017). Continuous-Wave Optically Pumped 1.55 μm InAs/InAlGaAs Quantum Dot Microdisk Lasers Epitaxially Grown on Silicon. ACS Photonics, 4(2), 204–210. https://doi.org/10.1021/acsphotonics.6b00731
2016
Lau, K. M., Wan, Y., Li, Q., Liu, A., Chow, W. W., Gossard, A. C., Bowers, J. E., Hu., E., "1-µm InAs quantum dot micro-disk lasers directly grown on exact (001) Si," 2016 International Semiconductor Laser Conference (ISLC), 2016, pp. 1-2. https://ieeexplore.ieee.org/abstract/document/7765705
Li, Q., Wan, Y., Liu, A. Y., Gossard, A. C., Bowers, J. E., Hu, E. L., & Lau, K. M. (2016). 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Optics Express, 24(18), 21038. https://doi.org/10.1364/oe.24.021038
Wan, Y., Li, Q., Liu, A. Y., Gossard, A. C., Bowers, J. E., Hu, E. L., & Lau, K. M. (2016). Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Applied Physics Letters, 109(1), 011104. https://doi.org/10.1063/1.4955456
Wan, Y., Li, Q., Liu, A. Y., Chow, W. W., Gossard, A. C., Bowers, J. E., Hu, E. L., & Lau, K. M. (2016). Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates. Applied Physics Letters, 108(22), 221101. Portico. https://doi.org/10.1063/1.4952600
Wan, Y., Li, Q., Liu, A. Y., Gossard, A. C., Bowers, J. E., Hu, E. L., & Lau, K. M. (2016). Room Temperature CW 1.3 μm Single Mode Lasing of InAs Quantum Dot Micro-disk Lasers Grown on (001) Si. Conference on Lasers and Electro-Optics. https://doi.org/10.1364/cleo_si.2016.sm1g.3
Wan, Y., Li, Q., Liu, A. Y., Gossard, A. C., Bowers, J. E., Hu, E. L., & Lau, K. M. (2016). Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Optics Letters, 41(7), 1664. https://doi.org/10.1364/ol.41.001664
2015
Wan, Y., Li, Q., Geng, Y., Shi, B., & Lau, K. M. (2015). InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Applied Physics Letters, 107(8), 081106. https://doi.org/10.1063/1.4929441
Shi, B., Li, Q., Wan, Y., Ng, K. W., Zou, X., Tang, C. W., & Lau, K. M. (2015). InAlGaAs/InAlAs MQWs on Si Substrate. IEEE Photonics Technology Letters, 27(7), 748–751. https://doi.org/10.1109/lpt.2015.2391099