Zinc Oxide Integrated Wavy Channel Thin-Film Transistor-Based High-Performance Digital Circuits

Amir N. Hanna, , et al., "Zinc oxide integrated wavy channel thin-film transistor-based high-performance digital circuits." IEEE Electron Device Letters 37 (2), 2016,  193.

Abstract: High-performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for the Internet of Everything applications. While semiconducting oxides, such as zinc oxide (ZnO), present promising opportunity in that regard, still wide area of improvement exists to increase the performance further. Here, we show a wavy channel (WC) architecture for ZnO integrated TFT, which increases transistor width without chip area penalty, enabling high performance in material agnostic way. We further demonstrate digital logic NAND circuit using the WC architecture and compare it with the conventional planar architecture. The WC architecture circuits have shown 2× higher peak-to-peak output voltage for the same input voltage. They also have 3× lower high-to-low propagation delay times, respectively, when compared with the planar architecture. The performance enhancement is attributed to both extra device width and enhanced field-effect mobility due to higher gate field electrostatics control.